Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 213, № 10 (2022)

Обложка

Асимптотики для задач в перфорированных областях с третьим нелинейным краевым условием на границах полостей

Борисов Д.И., Мухаметрахимова А.И.

Аннотация

В работе рассматривается краевая задача для эллиптического уравнения второго порядка с переменными коэффициентами в многомерной области, периодически перфорированной вдоль заданной гиперплоскости малыми полостями, расположенными на малых расстояниях друг от друга. Расстояния пропорциональны малому параметру $\varepsilon$, линейные размеры полостей – величине $\varepsilon\eta(\varepsilon)$, где $\eta(\varepsilon)$ – некоторая функция со значениями в отрезке $[0,1]$. Основной результат работы – полное асимптотическое разложение решения возмущенной задачи. Асимптотика строится на основе метода согласования асимптотических разложений в виде комбинации внешнего и внутреннего разложений. Оба этих разложения являются степенными по малому параметру $\varepsilon$ с коэффициентами, зависящими от $\eta$. Показано, что эти коэффициенты бесконечно дифференцируемы по $\eta\in(0,1]$ и равномерно ограничены по $\eta\in[0,1]$.Библиография: 38 названий.
Математический сборник. 2022;213(10):3-59
pages 3-59 views

Производная функции Минковского: оптимальные оценки

Гайфулин Д.Р.

Аннотация

Хорошо известно, что производная функции Минковского $?(x)$, если существует, принимает только два значения: $0$ и $+\infty$. Известно также, что величина $?'(x)$ в точке $x=[0;a_1,a_2,…,a_t,…]$ связана с предельным поведением среднего арифметического $(a_1+a_2+…+a_t)/t$. В частности, как показали Н. Мощевитин и А. Душистова, если $a_1+a_2+…+a_t>(\kappa_2+\varepsilon) t$, где $\varepsilon>0$, a $\kappa_2\approx 4.4010487$ – некоторая точно задаваемая константа, то $?'(x)=0$. Также ими было показано, что величину $\kappa_2$ нельзя заменить ни на какую меньшую константу. Мы рассматриваем двойственную задачу: насколько мала может быть величина $\kappa_2 t-a_1+a_2+…+a_t$, если известно, что $?'(x)=0$? Мы получаем оптимальные оценки в этой задаче.Библиография: 9 названий.
Математический сборник. 2022;213(10):60-89
pages 60-89 views

Изометричное вложение ограниченных метрических пространств в класс Громова–Хаусдорфа

Иванов А.О., Тужилин А.А.

Аннотация

В работе показано, что любое ограниченное метрическое пространство изометрично вкладывается в метрический класс Громова–Хаусдорфа $\operatorname{\mathcal{GH}}$. Этот результат является следствием полученного в работе описания локальной геометрии $\operatorname{\mathcal{GH}}$ в достаточно малой окрестности метрического пространства общего положения, которое представляет самостоятельный интерес. Использована техника оптимальных соответствий и их искажений.Библиография: 22 названия.
Математический сборник. 2022;213(10):90-107
pages 90-107 views

О приложениях роста в $\mathrm{SL}_2(\mathbb{F}_p)$ к доказательству модулярных вариантов гипотезы Зарембы

Лямкин М.В.

Аннотация

С помощью роста в $\mathrm{SL}_2(\mathbb{F}_p)$ доказано, что для любого простого $p$ и натурального $u$ найдутся натуральные $q=O(p^{2+\varepsilon})$, $\varepsilon > 0$, $q \equiv u \pmod{p}$, и $a < p$, $(a, p)=1$, такие, что неполные частные цепной дроби $a/q$ ограничены абсолютной константой.Библиография: 21 название.
Математический сборник. 2022;213(10):108-129
pages 108-129 views

Корректная постановка задачи о решении систем линейных алгебраических уравнений

Тыртышников Е.Е.

Аннотация

Исследуется предложенная А. Н. Тихоновым постановка задачи о решении систем линейных алгебраических уравнений, эквивалентных по точности. Доказана корректность данной постановки.Библиография: 5 названий.
Математический сборник. 2022;213(10):130-138
pages 130-138 views

Равномерно и локально выпуклые несимметричные пространства

Царьков И.Г.

Аннотация

Для равномерно выпуклых несимметричных пространств рассматриваются вопросы о непустых пересечениях вложенной системы выпуклых ограниченных замкнутых множеств. Изучаются вопросы о плотности множеств точек существования и аппроксимативной единственности в этих пространствах для случая непустых замкнутых подмножеств. А также изучается проблема существования и устойчивости чебышёвских центров и связь понятия $\gamma$-солнца со свойством солнечности и существования. Изучаются достаточные условия радиальной $\delta$-солнечности.Библиография: 27 названий.
Математический сборник. 2022;213(10):139-166
pages 139-166 views

Выпуклая оболочка и число Каратеодори множества в терминах метрической проекции

Шкляев К.С.

Аннотация

Доказывается, что всякую точку выпуклой оболочки компакта $M$ в гладком банаховом пространстве $X$ можно приблизить выпуклой комбинацией точек метрической проекции $P_M(x)$, где $x \in X$. Как следствие получено, что число Каратеодори компакта $M \subset X$ с не более чем $k$-значной метрической проекцией $P_M$ не превосходит $k$, т.е. всякая точка выпуклой оболочки $M$ лежит в выпуклой оболочке не более чем $k$ точек из $M$.Библиография: 26 названий.
Математический сборник. 2022;213(10):167-184
pages 167-184 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».