Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 210, № 10 (2019)

Обложка

Аналог теоремы о двух константах и оптимальное восстановление аналитических функций

Акопян Р.Р.

Аннотация

Исследуется несколько взаимосвязанных экстремальных задач для аналитических функций в односвязной области $G$ c жордановой спрямляемой границей $\Gamma$. Получено точное неравенство между значением аналитической функции в области и интегральными с весом нормами ее граничных значений $$ |f(z)|\le \mathscr{C}^{r,q}(z;\gamma_0,\varphi_0;\gamma_1,\varphi_1) \|f\|^\alpha_{L^q_{\varphi_1}(\gamma_1)}\|f\|^{1-\alpha}_{L^r_{\varphi_0}(\gamma_0)} $$ на двух измеримых подмножествах $\gamma_1$ и $\gamma_0=\Gamma\setminus\gamma_1$ границы области, являющееся аналогом теоремы братьев Неванлинна о двух константах. Решены соответствующие задачи оптимального восстановления функции по приближенно заданным граничным значениям на $\gamma_1$ и наилучшего приближения функционала аналитического продолжения функции в область с части границы $\gamma_1$. Библиография: 35 названий.
Математический сборник. 2019;210(10):3-16
pages 3-16 views

О некоторых свойствах вложений перестановочно-инвариантных пространств

Асташкин С.В., Семёнов Е.М.

Аннотация

Пусть $E$ и $F$ – перестановочно-инвариантные пространства на $[0,1]$, $E\subset F$. Это вложение называется строгим, если функции из единичного шара пространства $E$ имеют равностепенно абсолютно непрерывные нормы в $F$. Получены необходимые и достаточные условия строгости вложения для основных классов перестановочно-инвариантных пространств, а также изучены связи этого понятия с другими свойствами вложений, прежде всего со свойством дизъюнктной строгой сингулярности. В заключительной части работы получена характеризация свойства строгого вложения в терминах интерполяционных пространств.Библиография: 23 названия.
Математический сборник. 2019;210(10):17-36
pages 17-36 views

Гармонический анализ периодических и почти периодических на бесконечности функций из однородных пространств и гармоничных распределений

Баскаков А.Г., Струков В.Е., Струкова И.И.

Аннотация

В статье изучаются периодические и почти периодические на бесконечности векторные функции из однородных пространств и гармоничные распределения. Определяется понятие ряда Фурье периодической и почти периодической на бесконечности функции (распределения), коэффициентами которого являются медленно меняющиеся на бесконечности функции (распределения). Изучаются свойства рядов Фурье, получен аналог теоремы Винера об абсолютно сходящихся рядах Фурье для периодических на бесконечности функций. Особое внимание уделяется критериям периодичности и почти периодичности на бесконечности решений дифференциальных и разностных уравнений. Одними из основных результатов статьи являются теоремы об асимптотическом поведении ограниченной полугруппы операторов, генератор которой не имеет предельных точек на мнимой оси. Кроме того, вводится понятие асимптотически конечномерной полугруппы операторов и доказывается теорема о структуре такой полугруппы.Библиография: 39 названий.
Математический сборник. 2019;210(10):37-90
pages 37-90 views

Об эквивариантных расслоениях $G$-CW-комплексов

Геворкян П.С., Хименес Р.Б.

Аннотация

Доказывается, что если $G$ – компактная группа Ли, то эквивариантное расслоение Серра между $G$-CW-комплексами является эквивариантным расслоением Гуревича для класса компактно порожденных $G$-пространств. Такое утверждение в неэквивариантном случае было доказано М. Стейнбергером, Дж. Вестом и Р. Коти. Получена теорема об эквивариантном вложении $G$-CW-комплекса в некоторый симплициальный $G$-комплекс в качестве его эквивариантного ретракта. Этот результат является ключевым в доказательстве основной теоремы. Доказывается также, что эквивариантное отображение $p\colon E\to B$ между $G$-CW-комплексами является $G$-расслоением Гуревича тогда и только тогда, когда отображение $p^H\colon E^H \to B^H$ между пространствами $H$-неподвижных точек является расслоением Гуревича. Тем самым решается проблема Джеймса и Сегала в случае $G$-CW-комплексов.Библиография: 9 названий.
Математический сборник. 2019;210(10):91-98
pages 91-98 views

Поднятие параллелоэдров

Гришухин В.П., Данилов В.И.

Аннотация

Параллелоэдр – это такой многогранник, параллельными сдвигами которого можно замостить пространство без зазоров и пересечений по внутренним точкам. Г. Вороной выдвинул гипотезу, что всякий параллелоэдр аффинно эквивалентен ячейке Дирихле–Вороного некоторой решетки. Б. Н. Делоне в статье по перечислению 4-мерных параллелоэдров использовал термин параллелоэдр смещения. В настоящей работе этот параллелоэдр называется параллелоэдром поднятия, так как он получается как расширение параллелоэдра до параллелоэдра размерности на единицу большей.В настоящей статье показано, что в результате операции поднятия получаются именно те параллелоэдры, сумма Минковского которых с некоторым нетривиальным отрезком снова является параллелоэдром. Доказывается, что для параллелоэдров, допускающих поднятие и поднятых в общем положении, справедлива гипотеза Вороного.Библиография: 20 названий.
Математический сборник. 2019;210(10):99-121
pages 99-121 views

Свободные произведения групп сильно вербально замкнуты

Мажуга А.М.

Аннотация

В ряде недавних работ было установлено, что многие почти свободные группы, фундаментальные группы почти всех связных поверхностей и все группы, являющиеся нетривиальными свободными произведениями групп с тождествами, алгебраически замкнуты в любой группе, в которой они вербально замкнуты. В настоящей работе мы установим, что любая группа, являющаяся нетривиальным свободным произведением групп, алгебраически замкнута в любой группе, в которой она вербально замкнута.Библиография: 13 названий.
Математический сборник. 2019;210(10):122-160
pages 122-160 views

Критерий срезанности нечетных свободных узлов

Мантуров В.О., Федосеев Д.А.

Аннотация

Задача о конкордантности и кобордантности узлов является известной классической задачей маломерной топологии. Цель настоящей работы – показать, что для нечетных свободных узлов – свободных узлов со всеми нечетными перекрестками – вопрос о срезанности (конкордантности тривиальному узлу) имеет непосредственный ответ, основанный на возможности или невозможности спаривания хорд диаграммы узла.Библиография: 8 названий.
Математический сборник. 2019;210(10):161-178
pages 161-178 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».