Характеры классических групп, функции типа Шура и дискретные сплайны
- Авторы: Ольшанский Г.И.1,2,3
-
Учреждения:
- Институт проблем передачи информации им. А.А. Харкевича Российской академии наук
- Сколковский институт науки и технологий, территория Инновационного Центра "Сколково"
- Национальный исследовательский университет "Высшая школа экономики"
- Выпуск: Том 214, № 11 (2023)
- Страницы: 89-132
- Раздел: Статьи
- URL: https://bakhtiniada.ru/0368-8666/article/view/147924
- DOI: https://doi.org/10.4213/sm9905
- ID: 147924
Цитировать
Аннотация
Мы изучаем спектральную задачу, связанную с конечномерными характерами групп $Sp(2N)$, $SO(2N+1)$ и $SO(2N)$, образующих классические серии $\mathcal C$, $\mathcal B$ и $\mathcal D$ соответственно. Неприводимые характеры этих трех серий задаются симметрическими полиномами от $N$ переменных. Спектральная задача, о которой идет речь, состоит в разложении характеров при их ограничении на подгруппы того же типа, но меньшего ранга $K< N$.Основной результат работы – вывод явных детерминантных формул для коэффициентов разложения.
В действительности мы первоначально вычисляем эти коэффициенты в большей общности – для многомерных полиномов Якоби, зависящих от двух непрерывных параметров. Затем мы показываем, что формулы кардинально упрощаются в трех специальных случаях, когда полиномы Якоби отвечают характерам серий $\mathcal C$, $\mathcal B$ и $\mathcal D$. В частности, мы показываем, что тогда эти коэффициенты задаются кусочно полиномиальными функциями. Именно здесь возникает связь с дискретными сплайнами
.Для характеров серии $\mathcal A$ (т.е. для характеров унитарных группU(N)) аналогичные результаты были ранее получены А. Бородиным и авто-ром [5], а затем передоказаны другим методом Л. Петровым [39]. Случай симплектических и ортогональных характеров является более сложным.
Об авторах
Григорий Иосифович Ольшанский
Институт проблем передачи информации им. А.А. Харкевича Российской академии наук; Сколковский институт науки и технологий, территория Инновационного Центра "Сколково"; Национальный исследовательский университет "Высшая школа экономики"
Автор, ответственный за переписку.
Email: olsh2007@gmail.com
доктор физико-математических наук
Список литературы
- M. Aissen, I. J. Schoenberg, A. M. Whitney, “On the generating functions of totally positive sequences. I”, J. Anal. Math., 2 (1952), 93–103
- Р. Аски, Р. Рой, Дж. Эндрюс, Специальные функции, МЦНМО, М., 2013, 651 с.
- W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in Math. and Math. Phys., 32, Cambridge Univ. Press, Cambridge, 1935, vii+108 pp.
- S. Billey, V. Guillemin, E. Rassart, “A vector partition function for the multiplicities of $mathfrak{sl}_kmathbb C$”, J. Algebra, 278:1 (2004), 251–293
- A. Borodin, G. Olshanski, “The boundary of the Gelfand–Tsetlin graph: a new approach”, Adv. Math., 230:4-6 (2012), 1738–1779
- A. Borodin, G. Olshanski, “The Young bouquet and its boundary”, Mosc. Math. J., 13:2 (2013), 193–232
- A. Borodin, G. Olshanski, Representations of the infinite symmetric group, Cambridge Stud. Adv. Math., 160, Cambridge Univ. Press, Cambridge, 2017, vii+160 pp.
- R. P. Boyer, “Characters and factor representations of the infinite dimensional classical groups”, J. Operator Theory, 28:2 (1992), 281–307
- Yu. A. Brychkov, Handbook of special functions. Derivatives, integrals, series and other formulas, CRC Press, Boca Raton, FL, 2008, xx+680 pp.
- G. Budakçi, H. Oruç, “Further properties of quantum spline spaces”, Mathematics, 8:10 (2020), 1770, 10 pp.
- H. B. Curry, I. J. Schoenberg, “On Polya frequency functions. IV. The fundamental spline functions and their limits”, J. Anal. Math., 17 (1966), 71–107
- M. Defosseux, “Orbit measures, random matrix theory and interlaced determinantal processes”, Ann. Inst. Henri Poincare Probab. Stat., 46:1 (2010), 209–249
- A. Edrei, “On the generating functions of totally positive sequences. II”, J. Anal. Math., 2 (1952), 104–109
- A. Edrei, “On the generating function of a doubly infinite, totally positive sequence”, Trans. Amer. Math. Soc., 74 (1953), 367–383
- Г. Бэйтмен, А. Эрдейи, Высшие трансцендентные функции. Функции Бесселя, функции параболического цилиндра, ортогональные многочлены, Наука, М., 1966, 295 с.
- J. Faraut, “Rayleigh theorem, projection of orbital measures and spline functions”, Adv. Pure Appl. Math., 6:4 (2015), 261–283
- I. Gessel, D. Stanton, “Strange evaluations of hypergeometric series”, SIAM J. Math. Anal., 13:2 (1982), 295–308
- V. Gorin, “The $q$-Gelfand–Tsetlin graph, Gibbs measures and $q$-Toeplitz matrices”, Adv. Math., 229:1 (2012), 201–266
- V. Gorin, G. Olshanski, “A quantization of the harmonic analysis on the infinite-dimensional unitary group”, J. Funct. Anal., 270:1 (2016), 375–418
- V. Gorin, G. Panova, “Asymptotics of symmetric polynomials with applications to statistical mechanics and representation theory”, Ann. Probab., 43:6 (2015), 3052–3132
- G. Heckman, G. Schlichtkrull, Harmonic analysis and special functions on symmetric spaces, Perspect. Math., 16, Academic Press, Inc., San Diego, CA, 1994, xii+225 pp.
- S. Kerov, A. Okounkov, G. Olshanski, “The boundary of the Young graph with Jack edge multiplicities”, Int. Math. Res. Not. IMRN, 1998:4 (1998), 173–199
- C. Krattenthaler, K. Srinivasa Rao, “Automatic generation of hypergeometric identities by the beta integral method”, J. Comput. Appl. Math., 160:1-2 (2003), 159–173
- M. Lassalle, “Polynômes de Jacobi generalises”, C. R. Acad. Sci. Paris Ser. I Math., 312:6 (1991), 425–428
- F. W. Lawvere, The category of probabilistic mappings, 1962
- I. G. Macdonald, “Schur functions: theme and variations”, Sminaire Lotharingien de combinatoire, 28th session (Saint-Nabor, 1992), Publ. Inst. Rech. Math. Av., Univ. Louis Pasteur, Dep. Math., Inst. Rech. Math. Av., Strasbourg, 1992, 5–39
- A. I. Molev, “Comultiplication rules for the double Schur functions and Cauchy identities”, Electron. J. Combin., 16:1 (2009), R13, 44 pp.
- J. Nakagawa, M. Noumi, M. Shirakawa, Y. Yamada, “Tableau representation for Macdonald's ninth variation of Schur functions”, Physics and combinatorics, 2000 (Nagoya), World Sci. Publ., River Edge, NJ, 2001, 180–195
- А. Окуньков, Г. Ольшанский, “Сдвинутые функции Шура”, Алгебра и анализ, 9:2 (1997), 73–146
- A. Okounkov, G. Olshanski, “Shifted Schur functions. II. The binomial formula for characters of classical groups and its applications”, Kirillov's seminar on representation theory, Amer. Math. Soc. Transl. Ser. 2, 181, Adv. Math. Sci., 35, Amer. Math. Soc., Providence, RI, 1998, 245–271
- A. Okounkov, G. Olshanski, “Asymptotics of Jack polynomials as the number of variables goes to infinity”, Int. Math. Res. Not. IMRN, 1998:13 (1998), 641–682
- A. Okounkov, G. Olshanski, “Limits of $BC$-type orthogonal polynomials as the number of variables goes to infinity”, Jack, Hall–Littlewood and Macdonald polynomials, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006, 281–318
- G. Olshanski, “Projections of orbital measures, Gelfand–Tsetlin polytopes, and splines”, J. Lie Theory, 23:4 (2013), 1011–1022
- Г. И. Ольшанский, “Унитарные представления бесконечномерных классических групп $U(p,infty)$, $SO_0(p,infty)$, $Sp(p, infty)$ и соответствующих групп движений”, Функц. анализ и его прил., 12:3 (1978), 32–44
- G. Olshanski, “The Gelfand–Tsetlin graph and Markov processes”, Proceedings of the international congress of mathematicians (Seoul, 2014), v. IV, Kyung Moon Sa, Seoul, 2014, 431–453
- Г. И. Ольшанский, “Расширенный граф Гельфанда–Цетлина, его $q$-граница и $q$-B-сплайны”, Функц. анализ и его прил., 50:2 (2016), 31–60
- G. Olshanski, “Interpolation Macdonald polynomials and Cauchy-type identities”, J. Combin. Theory Ser. A, 162 (2019), 65–117
- G. Olshanski, A. Vershik, “Ergodic unitarily invariant measures on the space of infinite Hermitian matrices”, Contemporary mathematical physics, F. A. Berezin memorial volume, Amer. Math. Soc. Transl. Ser. 2, 175, Adv. Math. Sci., 31, Amer. Math. Soc., Providence, RI, 1996, 137–175
- L. Petrov, “The boundary of the Gelfand–Tsetlin graph: new proof of Borodin–Olshanski's formula, and its $q$-analogue”, Mosc. Math. J., 14:1 (2014), 121–160
- D. Pickrell, “Separable representations for automorphism groups of infinite symmetric spaces”, J. Funct. Anal., 90:1 (1990), 1–26
- А. П. Прудников, Ю. А. Брычков, О. И. Маричев, Интегралы и ряды. Дополнительные главы, Наука, M., 1986, 800 с.
- E. M. Rains, Letter to the author, June 13, 2013
- E. Rassart, “A polynomiality property for Littlewood–Richardson coefficients”, J. Combin. Theory Ser. A, 107:2 (2004), 161–179
- I. J. Schoenberg, “Metric spaces and completely monotone functions”, Ann. of Math. (2), 39:4 (1938), 811–841
- I. J. Schoenberg, “On Polya frequency functions. I. The totally positive functions and their Laplace transforms”, J. Anal. Math., 1 (1951), 331–374
- L. L. Schumaker, Spline functions: basic theory, Cambridge Math. Lib., 3rd ed., Cambridge Univ. Press, Cambridge, 2007, xvi+582 pp.
- A. N. Sergeev, A. P. Veselov, “Jacobi–Trudy formula for generalized Schur polynomials”, Mosc. Math. J., 14:1 (2014), 161–168
- P. Simeonov, R. Goldman, “Quantum B-splines”, BIT, 53:1 (2013), 193–223
- L. J. Slater, Generalized hypergeometric functions, Cambridge Univ. Press, Cambridge, 1966, xiii+273 pp.
- Г. Сеге, Ортогональные многочлены, Физматгиз, М., 1962, 500 с.
- E. Thoma, “Die unzerlegbaren, positive-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe”, Math. Z., 85 (1964), 40–61
- А. М. Вершик, С. В. Керов, “Асимптотическая теория характеров симметрической группы”, Функц. анализ и его прил., 15:4 (1981), 15–27
- А. М. Вершик, С. В. Керов, “Характеры и фактор-представления бесконечной унитарной группы”, Докл. АН СССР, 267:2 (1982), 272–276
- D. Voiculescu, “Representations factorielles de type $II_1$ de $U(infty)$”, J. Math. Pures Appl. (9), 55:1 (1976), 1–20
- J. A. Wilson, Hypergeometric series recurrence relations and some new orthogonal functions, Ph.D. Thesis, Univ. of Wisconsin, Madison, WI, 1978, 67 pp.
- A. Zhedanov, “Biorthogonal rational functions and the generalized eigenvalue problem”, J. Approx. Theory, 101:2 (1999), 303–329
- Д. П. Желобенко, Компактные группы Ли и их представления, Наука, М., 1970, 664 с.
- Д. И. Зубов, “Проекции орбитальных мер для классических групп Ли”, Функц. анализ и его прил., 50:3 (2016), 76–81
Дополнительные файлы
