Теоремы сравнения для эволюционных включений с максимально монотонными операторами. $L^2$-теория

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В сепарабельном гильбертовом пространстве изучается эволюционное включение с зависящим от времени семейством максимально монотонных операторов. Если элементы минимальной нормы семейства максимально монотонных операторов удовлетворяют условиям роста, то области определения семейства максимально монотонных операторов являются замкнутыми выпуклыми множествами. Поэтому будет определен процесс выметания, значениями которого являются нормальные конусы областей определения максимально монотонных операторов. Доказывается, что если процесс выметания при любом однозначном возмущении из пространства интегрируемых функций имеет решение, то этим свойством обладает и эволюционное включение с максимально монотонными операторами и однозначными возмущениями из пространства интегрируемых функций. В терминах свойств семейства максимально монотонных операторов даны самые общие условия, обеспечивающие существование решений процесса выметания. Все полученные результаты, а также предлагаемый подход являются новыми. Они используются для доказательства теоремы существования решений эволюционного включения с многозначным возмущением, значениями которого являются замкнутые невыпуклые множества. Библиография: 19 названий.

Об авторах

Александр Александрович Толстоногов

Институт динамики систем и теории управления имени В.М. Матросова Сибирского отделения Российской академии наук

Автор, ответственный за переписку.
Email: aatol@icc.ru
доктор физико-математических наук, профессор

Список литературы

  1. H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Stud., 5, Notas Mat., 50, North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., Inc., New York, 1973, vi+183 pp.
  2. A. A. Tolstonogov, “BV continuous solutions of an evolution inclusion with maximal monotone operator and nonconvex-valued perturbation. Existence theorem”, Set-Valued Var. Anal., 29:1 (2021), 29–60
  3. J. J. Moreau, “Evolution problem associated with a moving convex set in a Hilbert space”, J. Differential Equations, 26:3 (1977), 347–374
  4. A. A. Vladimirov, “Nonstationary dissipative evolution equations in a Hilbert space”, Nonlinear Anal., 17:6 (1991), 499–518
  5. D. Azzam-Laouir, W. Belhoula, C. Castaing, M. D. P. Monteiro Marques, “Perturbed evolution problems with absolutely continuous variation in time and applications”, J. Fixed Point Theory Appl., 21:2 (2019), 40, 32 pp.
  6. C. J. Himmelberg, “Measurable relations”, Fund. Math., 87 (1975), 53–72
  7. H. Attouch, “Familles d'operateurs maximaux monotones et measurabilite”, Ann. Mat. Pura Appl. (4), 120 (1979), 35–111
  8. В. И. Богачев, Основы теории меры, т. 2, 2-е изд., НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2006, 679 с.
  9. H. Attouch, R. J.-B. Wets, “Quantitative stability of variational systems. I. The epigraphical distance”, Trans. Amer. Math. Soc., 328:2 (1991), 695–729
  10. M. G. Crandall, A. Pazy, “Semi-groups of nonlinear contractions and dissipative sets”, J. Funct. Anal., 3:3 (1969), 376–418
  11. A. A. Tolstonogov, “BV solutions of a convex sweeping process with local conditions in the sense of differential measures”, Appl. Math. Optim., 84, suppl. 1 (2021), S591–S629
  12. А. А. Толстоногов, “$L_p$-непрерывные селекторы неподвижных точек многозначных отображений с разложимыми значениями. I. Теоремы существования”, Сиб. матем. журн., 40:3 (1999), 695–709
  13. M. Kunze, M. D. P. Monteiro Marques, “BV solutions to evolution problems with time-dependent domains”, Set-Valued Anal., 5:1 (1997), 57–72
  14. E. Vilches, Bao Tran Nguyen, “Evolution inclusions governed by time-dependent maximal monotone operators with a full domain”, Set-Valued Var. Anal., 28:3 (2020), 569–581
  15. I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Grundlehren Math. Wiss., 171, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York–Berlin, 1970, 415 pp.
  16. А. А. Толстоногов, “Максимальная монотонность оператора Немыцкого”, Функц. анализ и его прил., 55:3 (2021), 51–61
  17. A. A. Tolstonogov, “Sweeping process with unbounded nonconvex perturbation”, Nonlinear Anal., 108 (2014), 291–301
  18. A. A. Tolstonogov, “Polyhedral sweeping processes with unbounded nonconvex-valued perturbation”, J. Differential Equations, 263:11 (2017), 7965–7983
  19. А. А. Толстоногов, “Полиэдральные многозначные отображения: свойства и приложения”, Сиб. матем. журн., 61:2 (2020), 428–452

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Толстоногов А.А., 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».