Чем отличается граф от многообразия?
- Авторы: Айзенберг А.А.1, Масуда М.2,1, Соломадин Г.Д.1
-
Учреждения:
- Факультет компьютерных наук, Национальный исследовательский университет «Высшая школа экономики»
- Городской университет Осаки
- Выпуск: Том 214, № 6 (2023)
- Страницы: 41-68
- Раздел: Статьи
- URL: https://bakhtiniada.ru/0368-8666/article/view/133529
- DOI: https://doi.org/10.4213/sm9798
- ID: 133529
Цитировать
Аннотация
Рассматриваются эквивариантно формальные действия компактного тора $T$ на гладких многообразиях $X$ с изолированными неподвижными точками и исследуются глобальные гомологические характеристики градуированного частично упорядоченного множества $S(X)$ гранных подмногообразий. В работе доказано, что условие $j$-независимости касательных весов в каждой неподвижной точке влечет $(j+1)$-ацикличность остовов $S(X)_r$ при $r>j+1$. Этот результат обеспечивает необходимое топологическое условие, при котором абстрактный ГКМ-граф является ГКМ-графом некоторого ГКМ-многообразия. Частный случай описанной ацикличности использован для описания алгебры эквивариантных когомологий эквивариантно формального многообразия размерности $2n$ с $(n-1)$-независимым действием $(n-1)$-мерного тора при определенном условии раскрашиваемости ГКМ-графа. Полученное описание связывает алгебру эквивариантных когомологий с кольцом граней симплициального частично упорядоченного множества. Это наблюдение связывает торические действия сложности 1 с теорией тор-многообразий.Библиография: 27 названий.
Об авторах
Антон Андреевич Айзенберг
Факультет компьютерных наук, Национальный исследовательский университет «Высшая школа экономики»
Автор, ответственный за переписку.
Email: ayzenberga@gmail.com
кандидат физико-математических наук, без звания
Микия Масуда
Городской университет Осаки; Факультет компьютерных наук, Национальный исследовательский университет «Высшая школа экономики»
Email: masuda@sci.osaka-cu.ac.jp
Григорий Дмитриевич Соломадин
Факультет компьютерных наук, Национальный исследовательский университет «Высшая школа экономики»
Email: grigory.solomadin@gmail.com
кандидат физико-математических наук, без звания
Список литературы
- A. Adem, J. F. Davis, “Topics in transformation groups”, Handbook of geometric topology, North-Holland, Amsterdam, 2001, 1–54
- A. Ayzenberg, “Locally standard torus actions and $h'$-vectors of simplicial posets”, J. Math. Soc. Japan, 68:4 (2016), 1725–1745
- А. А. Айзенберг, “Торические действия сложности 1 и их локальные свойства”, Топология и физика, Сборник статей. К 80-летию со дня рождения академика Сергея Петровича Новикова, Труды МИАН, 302, МАИК “Наука/Интерпериодика”, М., 2018, 23–40
- A. Ayzenberg, “Torus action on quaternionic projective plane and related spaces”, Arnold Math. J., 7:2 (2021), 243–266
- A. Ayzenberg, M. Masuda, Orbit spaces of equivariantly formal torus actions
- A. Ayzenberg, V. Cherepanov, “Torus actions of complexity one in non-general position”, Osaka J. Math., 58:4 (2021), 839–853
- A. Ayzenberg, V. Cherepanov, Matroids in toric topology
- A. Björner, “The homology and shellability of matroids and geometric lattices”, Matroid applications, Encyclopedia Math. Appl., 40, Cambridge Univ. Press, Cambridge, 1992, 226–283
- A. Björner, M. L. Wachs, V. Welker, “Poset fiber theorems”, Trans. Amer. Math. Soc., 357:5 (2005), 1877–1899
- E. D. Bolker, V. W. Guillemin, T. S. Holm, How is a graph like a manifold?
- G. E. Bredon, “The free part of a torus action and related numerical equalities”, Duke Math. J., 41:4 (1974), 843–854
- V. M. Buchstaber, T. E. Panov, Toric topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015, xiv+518 pp.
- J. D. Carlson, E. A. Gamse, Y. Karshon, Realization of fixed-point data for GKM actions
- T. tom Dieck, Transformation groups, De Gruyter Stud. Math., 8, Walter de Gruyter & Co., Berlin, 1987, x+312 pp.
- D. Dugger, A primer on homotopy colimits
- M. Franz, V. Puppe, “Freeness of equivariant cohomology and mutants of compactified representations”, Toric topology, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 87–98
- M. Franz, V. Puppe, “Exact cohomology sequences with integral coefficients for torus actions”, Transform. Groups, 12:1 (2007), 65–76
- M. Goresky, R. Kottwitz, R. MacPherson, “Equivariant cohomology, Koszul duality, and the localization theorem”, Invent. Math., 131:1 (1998), 25–83
- V. Guilleminn, C. Zara, “1-skeleta, Betti numbers, and equivariant cohomology”, Duke Math. J., 107:2 (2001), 283–349
- У. И. Сян, Когомологическая теория топологических групп преобразований, Мир, М., 1979, 243 с.
- S. Illman, “The equivariant triangulation theorem for actions of compact Lie groups”, Math. Ann., 262:4 (1983), 487–501
- М. Йосвиг, “Группа проективностей и раскраска фасет простого многогранника”, УМН, 56:3(339) (2001), 171–172
- S. Kuroki, “Introduction to GKM theory”, Trends in Math., 11:2 (2009), 113–129
- M. Masuda, T. Panov, “On the cohomology of torus manifolds”, Osaka J. Math., 43:3 (2006), 711–746
- D. Quillen, “Higher algebraic K-theory. I”, Algebraic K-theory (Battelle Memorial Inst., Seattle, WA, 1972), v. I, Lecture Notes in Math., 341, Higher K-theories, Springer, Berlin, 1973, 85–147
- R. P. Stanley, “$f$-vectors and $h$-vectors of simplicial posets”, J. Pure Appl. Algebra, 71:2-3 (1991), 319–331
- V. Welker, G. M. Ziegler, R. T. Živaljevic, “Homotopy colimits – comparison lemmas for combinatorial applications”, J. Reine Angew. Math., 1999:509 (1999), 117–149
Дополнительные файлы
