Внутренние функции матричного аргумента и классы сопряженности в унитарных группах

Обложка
  • Авторы: Неретин Ю.А.1,2,3
  • Учреждения:
    1. Faculty of Mathematics, University of Vienna
    2. Институт проблем передачи информации им. А.А. Харкевича Российской академии наук
    3. Московский государственный университет имени М. В. Ломоносова, механико-математический факультет
  • Выпуск: Том 213, № 8 (2022)
  • Страницы: 26-43
  • Раздел: Статьи
  • URL: https://bakhtiniada.ru/0368-8666/article/view/133460
  • DOI: https://doi.org/10.4213/sm9673
  • ID: 133460

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Обозначим через $\mathrm B_n$ множество комплексных квадратных матриц порядка$n$, чьи евклидовы операторные нормы меньше 1. Его граница Шилова – множество $\operatorname{U}(n)$ всех унитарных матриц. Голоморфное отображение $\mathrm B_m\to\mathrm B_n$ назовем внутренним, если оно отображает $\operatorname{U}(m)$ в $\operatorname{U}(n)$. С другой стороны, рассмотрим группу $\operatorname{U}(n+mj)$ и ее подгруппу $\operatorname{U}(j)$, вложенную в $\operatorname{U}(n+mj)$ блочно-диагонально ($m$ блоков $\operatorname{U}(j)$ и единичный блок размера $n$). Классу сопряженности в $\operatorname{U}(n+mj)$ относительно подгруппы $\operatorname{U}(j)$ мы ставим в соответствие “характеристическую функцию”, которая является рациональным внутренним отображением $\mathrm B_m\to\mathrm B_n$. Мы показываем, что класс внутренних функций, которые могут быть получены как характеристические функции, замкнут относительно естественных операций таких, как поточечные прямые суммы, поточечные произведения, композиции, подстановки в конечномерные представления полной линейной группы и др. Мы также явно описываем соответствующие классы сопряженности.Библиография: 24 названия.

Об авторах

Юрий Александрович Неретин

Faculty of Mathematics, University of Vienna; Институт проблем передачи информации им. А.А. Харкевича Российской академии наук; Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Email: hepetuh@yandex.ru
доктор физико-математических наук, профессор

Список литературы

  1. А. Б. Александров, “Существование внутренних функций в шаре”, Матем. сб., 118(160):2(6) (1982), 147–163
  2. А. Б. Александров, “Внутренние функции на компактных пространствах”, Функц. анализ и его прил., 18:2 (1984), 1–13
  3. D. Alpay, An advanced complex analysis problem book. Topological vector spaces, functional analysis, and Hilbert spaces of analytic functions, Birkhäuser/Springer, Cham, 2015, ix+520 pp.
  4. J. A. Ball, V. Bolotnikov, “Canonical transfer-function realization for Schur–Agler-class functions of the polydisk”, A panorama of modern operator theory and related topics, Birkhäuser/Springer Basel AG, Basel, 2012, 75–122
  5. H. Bart, “Transfer functions and operator theory”, Linear Algebra Appl., 84 (1986), 33–61
  6. М. С. Бродский, “Унитарные операторные узлы и их характеристические функции”, УМН, 33:4(202) (1978), 141–168
  7. В. М. Бродский, “Об операторных узлах и их характеристических функциях”, Докл. АН СССР, 198:1 (1971), 16–19
  8. Дж. Гарнетт, Ограниченные аналитические функции, Мир, М., 1984, 470 с.
  9. G. Knese, “Rational inner functions in the Schur–Agler class of the polydisk”, Publ. Mat., 55:2 (2011), 343–357
  10. М. Г. Крейн, Ю. Л. Шмульян, “О дробно-линейных преобразованиях с операторными коэффициентами”, Матем. исследования (Кишинeв), 2:3 (1967), 64–96
  11. М. С. Лившиц, “Об одном классе линейных операторов в гильбертовом пространстве”, Матем. сб., 19(61):2 (1946), 239–262
  12. М. С. Лившиц, “О спектральном разложении линейных несамосопряженных операторов”, Матем. сб., 34(76):1 (1954), 145–199
  13. E. Low, “A construction of inner functions on the unit ball in $C^p$”, Invent. Math., 67:2 (1982), 223–229
  14. Ю. А. Неретин, Категории симметрий и бесконечномерные группы, Эдиториал УРСС, М., 1998, 431 с.
  15. Yu. A. Neretin, Lectures on Gaussian integral operators and classical groups, EMS Ser. Lect. Math., Eur. Math. Soc. (EMS), Zürich, 2011, xii+559 pp.
  16. Yu. A. Neretin, “Multi-operator colligations and multivariate characteristic functions”, Anal. Math. Phys., 1:2-3 (2011), 121–138
  17. Ю. А. Неретин, “Сферичность и умножение двойных классов смежности для бесконечномерных классических групп”, Функц. анализ и его прил., 45:3 (2011), 79–96
  18. Ю. А. Неретин, “Умножение классов сопряженности, операторные узлы и характеристические функции матричного аргумента”, Функц. анализ и его прил., 51:2 (2017), 25–41
  19. Н. И. Нессонов, “Фактор-представления группы $GL(infty)$ и допустимые представления $GL(infty)^X$”, Матем. физ., анал., геом., 10:2 (2003), 167–187
  20. G. I. Ol'shanskiĭ, “Unitary representations of infinite-dimensional pairs $(G,K)$ and the formalism of R. Howe”, Representation of Lie groups and related topics, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York, 1990, 269–463
  21. И. И. Пятецкий-Шапиро, Геометрия классических областей и теория автоморфных фуикций, Физматлит, М., 1961, 191 с.
  22. В. П. Потапов, “Мультипликативная структура $J$-нерастягивающих матриц-функций”, Тр. ММО, 4, ГИТТЛ, М., 1955, 125–236
  23. Б. Секефальви-Надь, Ч. Фояш, Гармонический анализ операторов в гильбертовом пространстве, Мир, М., 1970, 431 с.
  24. Д. П. Желобенко, Компактные группы Ли и их представления, Наука, М., 1970, 664 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Неретин Ю.А., 2022

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».