Global extrema of the Delange function, bounds for digital sums and concave functions

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The sums $S_q(N)$ are defined by the equality $S_q(N)=s_q(1)+…+s_q(N-1)$ for all positive integers $N$ and $q\ge2$, where $s_q(n)$ is the sum of digits of the integer $n$ written in the system with base $q$. In 1975 Delange generalised Trollope's formula and proved that $S_q(N)/N-({q-1})/2\cdot\log_qN=-1/2\cdot f_q(q^{\{\log_q N\}-1})$, where $f_q(x)=(q-1)\log_q x+D_q(x)/x$ and $D_q$ is the continuous nowhere differentiable Delange function. We find global extrema of $f_q$ and, using this, obtain a precise bound for the difference $S_q(N)/N-(q-1)/2\cdot\log_qN$. In the case $q=2$ this becomes the bound for binary sums proved by Krüppel in 2008 and also earlier by other authors. We also evaluate the global extrema of some other continuous nowhere differentiable functions. We introduce the natural concave hull of a function and prove a criterion simplifying the evaluation of this hull. Moreover, we introduce the notion of an extreme subargument of a function on a convex set. We show that all points of global maximum of the difference $f-g$, where the function $g$ is strictly concave and some additional conditions hold, are extreme subarguments for $f$. A similar result is obtained for functions of the form $v+f/w$. We evaluate the global extrema and find extreme subarguments of the Delange function on the interval $[0,1]$. The results in the paper are illustrated by graphs and tables. Bibliography: 16 titles.

Авторлар туралы

Oleg Galkin

National Research University "Higher School of Economics", Nizhny Novgorod Branch

Email: olegegalkin@ya.ru
Candidate of physico-mathematical sciences, Associate professor

Svetlana Galkina

National Research University "Higher School of Economics", Nizhny Novgorod Branch

Email: galkin@mm.unn.ac.ru
Candidate of physico-mathematical sciences, Associate professor

Әдебиет тізімі

  1. P. C. Allaart, K. Kawamura, “The Takagi function: a survey”, Real Anal. Exchange, 37:1 (2011), 1–54
  2. L. H. Y. Chen, Hsien-Kuei Hwang, V. Zacharovas, “Distribution of the sum-of-digits function of random integers: a survey”, Probab. Surv., 11 (2014), 177–236
  3. H. Delange, “Sur la fonction sommatoire de la fonction “somme des chiffres””, Enseign. Math. (2), 21 (1975), 31–47
  4. О. Е. Галкин, С. Ю. Галкина, “О свойствах функций показательного класса Такаги”, Уфимск. матем. журн., 7:3 (2015), 29–38
  5. О. Е. Галкин, С. Ю. Галкина, “Глобальные экстремумы функции Кобаяши–Грея–Такаги и двоичные цифровые суммы”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 27:1 (2017), 17–25
  6. J. P. Kahane, “Sur l'exemple, donne par M. de Rham, d'une fonction continue sans derivee”, Enseign. Math. (2), 5 (1959), 53–57
  7. Y. Kamiya, T. Okada, T. Sekiguchi, Y. Shiota, “Power and exponential sums for generalized coding systems by a measure theoretic approach”, Theoret. Comput. Sci., 592 (2015), 23–38
  8. M. Krüppel, “Takagi's continuous nowhere differentiable function and binary digital sums”, Rostock. Math. Kolloq., 63 (2008), 37–54
  9. M. Krüppel, “De Rham's singular function, its partial derivatives with respect to the parameter and binary digital sums”, Rostock. Math. Kolloq., 64 (2009), 57–74
  10. J. C. Lagarias, “The Takagi function and its properties”, Functions in number theory and their probabilistic aspects, RIMS Kôkyûroku Bessatsu, B34, Res. Inst. Math. Sci. (RIMS), Kyoto, 2012, 153–189
  11. J. H. Lambert, “Vorläufige Kenntnisse für die, so die Quadratur und Rektifikation des Zirculs suchen”, Beiträge zum Gebrauche der Mathematik und deren Anwendung, v. 2, Verlage des Buchladens der Realschule, Berlin, 1770, 140–169
  12. Б. Мартынов, “О максимумах функции Ван-дер-Вардена”, Квант, 1982, № 6, 8–14
  13. K. Muramoto, T. Okada, T. Sekiguchi, Y. Shiota, “Digital sum problems for the $p$-adic expansion of natural numbers”, Interdiscip. Inform. Sci., 6:2 (2000), 105–109
  14. Е. С. Половинкин, М. В. Балашов, Элементы выпуклого и сильно выпуклого анализа, 2-е изд., Физматлит, М., 2007, 438 с.
  15. T. Takagi, “A simple example of the continuous function without derivative”, Phys.-Math. Soc. Japan, 1 (1903), 176–177
  16. J. R. Trollope, “An explicit expression for binary digital sums”, Math. Mag., 41 (1968), 21–25

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Galkin O.E., Galkina S.Y., 2020

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».