Global extrema of the Delange function, bounds for digital sums and concave functions
- Авторлар: Galkin O.E.1, Galkina S.Y.1
-
Мекемелер:
- National Research University "Higher School of Economics", Nizhny Novgorod Branch
- Шығарылым: Том 211, № 3 (2020)
- Беттер: 32-70
- Бөлім: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/133315
- DOI: https://doi.org/10.4213/sm9143
- ID: 133315
Дәйексөз келтіру
Аннотация
Авторлар туралы
Oleg Galkin
National Research University "Higher School of Economics", Nizhny Novgorod Branch
Email: olegegalkin@ya.ru
Candidate of physico-mathematical sciences, Associate professor
Svetlana Galkina
National Research University "Higher School of Economics", Nizhny Novgorod Branch
Email: galkin@mm.unn.ac.ru
Candidate of physico-mathematical sciences, Associate professor
Әдебиет тізімі
- P. C. Allaart, K. Kawamura, “The Takagi function: a survey”, Real Anal. Exchange, 37:1 (2011), 1–54
- L. H. Y. Chen, Hsien-Kuei Hwang, V. Zacharovas, “Distribution of the sum-of-digits function of random integers: a survey”, Probab. Surv., 11 (2014), 177–236
- H. Delange, “Sur la fonction sommatoire de la fonction “somme des chiffres””, Enseign. Math. (2), 21 (1975), 31–47
- О. Е. Галкин, С. Ю. Галкина, “О свойствах функций показательного класса Такаги”, Уфимск. матем. журн., 7:3 (2015), 29–38
- О. Е. Галкин, С. Ю. Галкина, “Глобальные экстремумы функции Кобаяши–Грея–Такаги и двоичные цифровые суммы”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 27:1 (2017), 17–25
- J. P. Kahane, “Sur l'exemple, donne par M. de Rham, d'une fonction continue sans derivee”, Enseign. Math. (2), 5 (1959), 53–57
- Y. Kamiya, T. Okada, T. Sekiguchi, Y. Shiota, “Power and exponential sums for generalized coding systems by a measure theoretic approach”, Theoret. Comput. Sci., 592 (2015), 23–38
- M. Krüppel, “Takagi's continuous nowhere differentiable function and binary digital sums”, Rostock. Math. Kolloq., 63 (2008), 37–54
- M. Krüppel, “De Rham's singular function, its partial derivatives with respect to the parameter and binary digital sums”, Rostock. Math. Kolloq., 64 (2009), 57–74
- J. C. Lagarias, “The Takagi function and its properties”, Functions in number theory and their probabilistic aspects, RIMS Kôkyûroku Bessatsu, B34, Res. Inst. Math. Sci. (RIMS), Kyoto, 2012, 153–189
- J. H. Lambert, “Vorläufige Kenntnisse für die, so die Quadratur und Rektifikation des Zirculs suchen”, Beiträge zum Gebrauche der Mathematik und deren Anwendung, v. 2, Verlage des Buchladens der Realschule, Berlin, 1770, 140–169
- Б. Мартынов, “О максимумах функции Ван-дер-Вардена”, Квант, 1982, № 6, 8–14
- K. Muramoto, T. Okada, T. Sekiguchi, Y. Shiota, “Digital sum problems for the $p$-adic expansion of natural numbers”, Interdiscip. Inform. Sci., 6:2 (2000), 105–109
- Е. С. Половинкин, М. В. Балашов, Элементы выпуклого и сильно выпуклого анализа, 2-е изд., Физматлит, М., 2007, 438 с.
- T. Takagi, “A simple example of the continuous function without derivative”, Phys.-Math. Soc. Japan, 1 (1903), 176–177
- J. R. Trollope, “An explicit expression for binary digital sums”, Math. Mag., 41 (1968), 21–25
Қосымша файлдар
