Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 210, № 4 (2019)

Обложка

Весь выпуск

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Асимптотика собственных чисел длинных пластин Кирхгофа с защемленными краями

Бахарев Ф.Л., Назаров С.А.

Аннотация

Построены асимптотические разложения собственных чисел и функций задачи Дирихле для бигармонического оператора в тонких областях (пластины Кирхгофа с защемленными краями). Для прямоугольной пластины главные члены асимптотически определяются из задачи Дирихле для обыкновенного дифференциального уравнения второго порядка, а для $\mathsf T$-образного сочленения пластин – из другой предельной задачи в бесконечном волноводе, полученном объединением трех полуполос в форме литеры $\mathsf T$ и описывающем явление пограничного слоя. Сформулированы открытые вопросы, на которые разработанный метод не предоставил ответов. Библиография: 33 названия.
Математический сборник. 2019;210(4):3-26
pages 3-26 views

Группы гомеоморфизмов прямой и окружности. Критерии почти нильпотентности

Бекларян Л.А.

Аннотация

В представленной работе для конечно порожденных групп гомеоморфизмов прямой и окружности в терминах свободных подполугрупп с двумя образующими и условия максимальности установлен критерий почти нильпотентности. Ранее автором для конечно порожденных групп диффеоморфизмов прямой и окружности гладкости $C^{(1)}$ с взаимно трансверсальными элементами в терминах свободных подполугрупп с двумя образующими также были установлены критерии почти нильпотентности. Более того, в случае групп диффеоморфизмов удалось получить структурные теоремы, показать типичность ряда характеристик таких групп. Установлено, что в пространстве всех конечно порожденных групп диффеоморфизмов гладкости $C^{(1)}$ с заданным числом образующих множество групп с взаимно трансверсальными элементами содержит счетное пересечение открытых всюду плотных подмножеств (массивное множество). В работе Наваса для конечно порожденных групп диффеоморфизмов интервала гладкости $C^{(1+\alpha)}$, $\alpha>0$, в терминах свободных подполугрупп с двумя образующими также был установлен критерий почти нильпотентности.Библиография: 21 название.
Математический сборник. 2019;210(4):27-40
pages 27-40 views

Основания $(2n, k)$-многообразий

Бухштабер В.М., Терзич С.

Аннотация

В центре внимания работы система аксиом, на основе которых вводятся структурные данные $(2n,k)$-многообразий $M^{2n}$, где $M^{2n}$ – гладкое компактное $2n$-мерное многообразие с гладким эффективным действием $k$-мерного тора $T^k$. Дана конструкция в терминах этих данных модельного пространства $\mathfrak{E}$ с действием тора $T^k$ такого,что имеет место $T^k$-эквивариантный гомеоморфизм $\mathfrak{E} \to M^{2n}$,индуцирующий гомеоморфизм $\mathfrak{E}/T^k \to M^{2n}/T^k$.Число $d=n-k$ называется сложностью $(2n,k)$-многообразия.Наша теория охватывает торическую геометрию и торическую топологию при $d=0$. Показано, что класс однородных пространств $G/H$ компактных групп Ли, где $\operatorname{rk} G=\operatorname{rk} H$, содержит $(2n,k)$-многообразия ненулевой сложности.Результаты продемонстрированы на комплексных многообразиях Грассмана $G_{k+1,q}$ с эффективным действием тора $T^k$.Библиография: 23 названия.
Математический сборник. 2019;210(4):41-86
pages 41-86 views

Сходимость процессов сплайн-интерполяции и обусловленность систем уравнений построения сплайнов

Волков Ю.С.

Аннотация

Работа продолжает исследования по изучению сходимости процессов интерполяции классическими полиномиальными сплайнами нечетной степени. Доказано, что вопрос о хорошей обусловленности системы уравнений для построения интерполяционного сплайна через коэффициенты разложения $k$-й производной по $B$-сплайнам эквивалентен вопросу сходимости процесса интерполяции для $k$-й производной сплайна в классе функций с непрерывной $k$-й производной. Установлено, что при интерполяции сплайнами степени $2n-1$ условия ограниченности проекторов, соответствующих производным порядков $k$ и $2n-1-k$, эквивалентны. Библиография: 26 названий.
Математический сборник. 2019;210(4):87-102
pages 87-102 views

Линейная совместная коллокационная аппроксимация для параметрических и стохастических эллиптических дифференциальных уравнений с частными производными

Динь З.

Аннотация

Рассмотрим параметрическую эллиптическую задачу $$- \operatorname{div}(a(y)(x)\nabla u(y)(x))=f(x),\qquad x \in D, \quad y \in {\mathbb I}^\infty, \quad u|_{\partial D}=0, $$ где $D \subset \mathbb R^m$ – ограниченная липшицева область, ${\mathbb I}^\infty:=[-1,1]^\infty$, $f \in L_2(D)$ и коэффициенты диффузии $a$ удовлетворяют условию равномерной эллиптичности и аффинно зависят от $y$. Параметр $y$ может быть детерминированной или случайной величиной. Основная задача, изучением которой мы будем заниматься в настоящей работе, состоит в следующем. Предположим, что имеется последовательность аппроксимаций с некоторой скоростью сходимости погрешности в энергетической норме пространства $V:=H^1_0(D)$ для непараметрической задачи $- \operatorname{div} (a(y_0)(x)\nabla u(y_0)(x))=f(x)$ в каждой точке $y_0 \in {\mathbb I}^\infty$. При каких условиях эта последовательность будет индуцировать последовательность аппроксимаций с той же скоростью сходимости погрешности для параметрической эллиптической задачи в норме пространств Бохнера $L_\infty({\mathbb I}^\infty,V)$? Мы решили эту задачу линейными совместными коллокационными методами на основе интерполяции многочленами Лагранжа в области параметра ${\mathbb I}^\infty$. Мы покажем, что при очень слабых условиях эти методы аппроксимации дают ту же скорость сходимости погрешности, что и для непараметрической эллиптической задачи. В этом смысле линейные методы нивелируют проклятие размерности. Библиография: 22 названия.
Математический сборник. 2019;210(4):103-127
pages 103-127 views

О совместных приближениях $\ln 3$ и $\pi/\sqrt{3}$ рациональными числами

Полянский А.А.

Аннотация

В статье доказывается оценка сверху для показателя совместного приближения $\ln 3$ и $\pi/\sqrt{3}$ рациональными числами.Библиография: 16 названий.
Математический сборник. 2019;210(4):128-144
pages 128-144 views

Эквивалентность тригонометрической системы и ее возмущений в пространствах $L^p$ и $C$

Седлецкий А.М.

Аннотация

Пусть $B=B[-\pi,\pi]$ – какое-нибудь из пространств $L^p(-\pi,\pi)$, $1\leq p< \infty$, $p\neq 2$, $C[-\pi,\pi]$, пусть $B_a=B[-\pi+a, \pi+a]$, $a\in\mathbb{R}$. Получен ряд условий (как необходимых, так и достаточных) для того, чтобы “возмущенная тригонометрическая система” $e^{i(n+\alpha_n)t}$, $n\in\mathbb{Z}$, была эквивалентна тригонометрической системе $e^{int}$, $n\in\mathbb{Z}$, в $B_a$ при любом $a\in\mathbb{R}$. В частности, показано, что если $(\alpha_n)\in l^s$, где $1/s=|1/p-1/2|$, то указанная эквивалентность имеет место, причем показатель $s$ является точным. С использованием (в том числе) этого результата доказано существование в $L^p(-\pi,\pi)$, $1< p< 2$, базисов из экспонент, не являющихся эквивалентными тригонометрическому базису.
Доказательства основаны на применении мультипликаторов Фурье.
Библиография: 18 названий.

Математический сборник. 2019;210(4):145-164
pages 145-164 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».