Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 213, № 2 (2022)

Обложка

Топологическая классификация биллиардов в трехмерном евклидовом пространстве, ограниченных софокусными квадриками

Белозеров Г.В.

Аннотация

Рассматриваются биллиарды на связных компактных столах в $\mathbb{R}^3$, ограниченных конечным числом софокусных квадрик и имеющих двугранные углы, равные ${\pi}/{2}$. Биллиарды в таких областях являются интегрируемыми, имея три первых интеграла, инволютивных внутри области. Введено два отношения эквивалентности: комбинаторная эквивалентность столов-областей, определяемая устройством их границы, и слабая эквивалентность соответствующих биллиардных систем на них. Выполнена классификация биллиардных столов в $\mathbb{R}^3$ относительно комбинаторной эквивалентности, получено 35 классов попарно неэквивалентных столов. Для каждого из полученных классов столов определен класс гомеоморфности неособого изоэнергетического 5-многообразия: либо $S^5$, либо $S^1\times S^4$, либо $S^2\times S^3$. Получено 24 класса попарно неэквивалентных (относительно слабой эквивалентности) слоений Лиувилля биллиардов на указанных столах в ограничении на неособый уровень энергии. Также определены атомы-бифуркации трехмерных торов, соответствующие дугам бифуркационной диаграммы.Библиография: 59 названий.
Математический сборник. 2022;213(2):3-36
pages 3-36 views

Необходимое и достаточное условие существования простых замкнутых геодезических на правильных тетраэдрах в сферическом пространстве

Борисенко А.А.

Аннотация

Доказано необходимое и достаточное условие существования простой замкнутой геодезической типа $(p,q)$ на правильном тетраэдре в сферическом пространстве. Библиография: 6 названий.
Математический сборник. 2022;213(2):37-49
pages 37-49 views

Критерий гиперболичности одного класса диффеоморфизмов на бесконечномерном торе

Глызин С.Д., Колесов А.Ю.

Аннотация

На бесконечномерном торе $\mathbb{T}^{\infty} {=} E/2\pi\mathbb{Z}^{\infty}$, где $E$ – бесконечномерное вещественное банахово пространство, $\mathbb{Z}^{\infty}$ – абстрактная целочисленная решетка, рассматривается специальный класс диффеоморфизмов $\operatorname{Diff}(\mathbb{T}^{\infty})$. Упомянутый класс состоит из отображений $G\colon \mathbb{T}^{\infty}\to\mathbb{T}^{\infty}$, представляющих собой суммы линейных обратимых ограниченных операторов, сохраняющих решетку $\mathbb{Z}^{\infty}$, и $C^1$-гладких периодических добавок. Устанавливаются необходимые и достаточные условия, гарантирующие гиперболичность таких отображений (т.е. принадлежность их к диффеоморфизмам Аносова).Библиография: 15 названий.
Математический сборник. 2022;213(2):50-95
pages 50-95 views

Решето И. М. Виноградова и оценка неполной суммы Клоостермана

Королёв М.А.

Аннотация

За счет применения так называемого решета И. М. Виноградова уточняется оценка короткой суммы Клоостермана по простому модулю $q$. Число слагаемых в такой сумме может быть меньшим сколь угодно малой фиксированной степени $q$. Библиография: 26 названий.
Математический сборник. 2022;213(2):96-114
pages 96-114 views

Значения $\mathfrak{sl}_2$-весовой системы на семействе графов, не являющихся графами пересечений хордовых диаграмм

Зинова П.А.

Аннотация

Теорема Чмутова–Ландо утверждает, что значение весовой системы (функции на хордовых диаграммах, удовлетворяющей четырехчленным соотношениям Васильева), отвечающей алгебре Ли $\mathfrak{sl}_2$, зависит лишь от графа пересечений хордовой диаграммы.Мы вычисляем значения $\mathfrak{sl}_2$-весовой системы на графах нескольких бесконечных серий, представляющих собой соединение графа с малым числом вершин с дискретным графом. В частности, мы вычисляем эти значения для серии, в которой исходный граф является циклом на пяти вершинах; все графы этой серии, за исключением начального, не являются графами пересечений.Мы также выводим формулу для проекций производящих функций графов, представляющих собой соединение произвольного графа с дискретным, на подпространство примитивных элементов в алгебре Хопфа графов. Воспользовавшись полученной формулой, мы вычисляем значения $\mathfrak{sl}_2$-весовой системы на проекциях графов указанных серий на подпространство примитивных элементов. Наши вычисления подтверждают гипотезу С. К. Ландо о значениях $\mathfrak{sl}_2$-весовой системы на проекциях на подпространство примитивных.Библиография: 17 названий.
Математический сборник. 2022;213(2):115-148
pages 115-148 views

Солнечность и связность множеств в пространстве $C[a,b]$ и конечномерных полиэдральных пространствах

Царьков И.Г.

Аннотация

Изучаются свойства обобщенных $n$-ломаных относительно монотонно линейных ограниченно компактных множеств в пространстве $C[a,b]$. Доказывается, что такие множества монотонно линейно связны и являются солнцами. Изучаются точки светимости множеств в полиэдральных пространствах, допускающих полунепрерывную снизу выборку из метрической проекции. Строится пример четырехмерного полиэдрального пространства и не $B$-связного солнца в нем. Библиография: 14 названий.
Математический сборник. 2022;213(2):149-166
pages 149-166 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».