Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 212, No 5 (2021)

Manifolds of isospectral arrow matrices

Ayzenberg A.A., Buchstaber V.M.

Abstract

An arrow matrix is a matrix with zeros outside the main diagonal, the first row and the first column. We consider the space $M_{\operatorname{St}_n,\lambda}$ of Hermitian arrow $(n+1)\times (n+1)$-matrices with fixed simple spectrum $\lambda$. We prove that this space is a smooth $2n$-manifold with a locally standard torus action: we describe the topology and combinatorics of its orbit space. If $n\geqslant 3$, the orbit space $M_{\operatorname{St}_n,\lambda}/T^n$ is not a polytope, hence $M_{\operatorname{St}_n,\lambda}$ is not a quasitoric manifold. However, there is an action of a semidirect product $T^n\rtimes\Sigma_n$ on $M_{\operatorname{St}_n,\lambda}$, and the orbit space of this action is a certain simple polytope $\mathscr{B}^n$ obtained from the cube by cutting off codimension-2 faces. In the case $n=3$, the space $M_{\operatorname{St}_3,\lambda}/T^3$ is a solid torus with boundary subdivided into hexagons in a regular way. This description allows us to compute the cohomology ring and equivariant cohomology ring of the 6-dimensional manifold $M_{\operatorname{St}_3,\lambda}$ and another manifold, its twin. Bibliography: 32 titles.
Matematicheskii Sbornik. 2021;212(5):3-36
pages 3-36 views

Monotone path-connectedness of Chebyshev sets in three-dimensional spaces

Alimov A.R., Bednov B.B.

Abstract

We characterize the three-dimensional Banach spaces in which any Chebyshev set is monotone path-connected. Namely, we show that in a three-dimensional space $X$ each Chebyshev set is monotone path-connected if and only if one of the following two conditions is satisfied: any exposed point of the unit sphere of $X$ is a smooth point or $X=Y\oplus_\infty \mathbb R$ (that is, the unit sphere of $X$ is a cylinder). Bibliography: 17 titles.
Matematicheskii Sbornik. 2021;212(5):37-57
pages 37-57 views

Interpolation sequences and nonspanning systems of exponentials on curves

Gaisin R.A.

Abstract

Interpolation sequences of the form $\{\pm\lambda_n\}$ $(\lambda_n > 0)$ are investigated, and also the problem of when the system of exponentials $\{e^{\pm\lambda_n z}\}$ is nonspanning on the family of arbitrary rectifiable curves in the uniform norm.In terms of the interpolation nodes (or equivalently, the exponents of the system of exponentials) a criterion for the interpolation problem to be solvable is established and the strong nonspanning property of $\{e^{\pm\lambda_n z}\}$ is proved. This significantly improves some known results, in particular, results due to Korevaar, Dixon and Berndtsson.Bibliography: 23 titles.
Matematicheskii Sbornik. 2021;212(5):58-79
pages 58-79 views

A trace formula for higher order ordinary differential operators

Gal'kovskii E.D., Nazarov A.I.

Abstract

We obtain a first-order trace formula for a higher order differential operator on a closed interval in the case where the perturbation operator is the operator of multiplication by a finite complex-valued charge. For operators of even orders $n\ge4$, the result contains a term of new type, previously unknown.Bibliography: 15 titles.
Matematicheskii Sbornik. 2021;212(5):80-101
pages 80-101 views

On $DA$-endomorphisms of the two-dimensional torus

Grines V.Z., Zhuzhoma E.V., Kurenkov E.D.

Abstract

It is proved that in each homotopy class of continuous mappings of the two-dimensional torus to itself that induce a hyperbolic action on the fundamental group, as long as it is free of expanding mappings, there exists an $A$-endomorphism $f$ whose nonwandering set consists of an attracting hyperbolic sink and a nontrivial one-dimensional collapsing repeller, which is a one-dimensional orientable lamination, locally homeomorphic to the direct product of a Cantor set and a line segment. Moreover, the unstable $Df$-invariant subbundle of the tangent space to the repeller has the property of uniqueness. Bibliography: 23 titles.
Matematicheskii Sbornik. 2021;212(5):102-132
pages 102-132 views

Variational method for elliptic systems with discontinuous nonlinearities

Pavlenko V.N., Potapov D.K.

Abstract

A system of two elliptic equations with discontinuous nonlinearities and homogeneous Dirichlet boundary conditions is studied. Existence theorems for strong and semiregular solutions are deduced using a variational method. A strong solution is called semiregular if the set on which the values of the solution are points of discontinuity of the nonlinearity with respect to the phase variable has measure zero. Classes of nonlinearities are distinguished for which the assumptions of the theorems established here hold. The variational approach in this paper is based on the concept of a quasipotential operator, by contrast with the traditional approach, which uses the generalized Clark gradient. Bibliography: 22 titles.
Matematicheskii Sbornik. 2021;212(5):133-152
pages 133-152 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».