Polynomials of complete spatial graphs and Jones polynomial of the related links
- Authors: Vesnin A.Y.1,2,3, Oshmarina O.A.2,3
-
Affiliations:
- Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- Tomsk State University, Tomsk, Russia
- Issue: Vol 216, No 5 (2025)
- Pages: 33-63
- Section: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/306704
- DOI: https://doi.org/10.4213/sm10167
- ID: 306704
Cite item
Abstract
A spatial $K_n$-graph is an embedding of a complete graph $K_n$ with $n$ vertices in a $3$-sphere $S^3$. Knots in a spatial $K_n$-graph corresponding to cycles of $K_n$ are called constituent knots. We consider the case $n=4$. The boundary of the orientable band surface constructed from a spatial $K_4$-graph and having the zero Seifert form is a $4$-component link, which is referred to as the associated link. We obtain formulae relating the normalized Yamada and Jaeger polynomials of spatial $K_4$-graphs, their $\theta$-subgraphs and cyclic subgraphs with the Jones polynomials of constituent knots and related links.
Keywords
About the authors
Andrei Yurievich Vesnin
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia; Tomsk State University, Tomsk, Russia
Author for correspondence.
Email: vesnin@math.nsc.ru
Doctor of physico-mathematical sciences, Senior Researcher
Olga Andreevna Oshmarina
Novosibirsk State University, Novosibirsk, Russia; Tomsk State University, Tomsk, Russia
Email: o.oshmarina@g.nsu.ru
References
- S. Yamada, “An invariant of spatial graphs”, J. Graph Theory, 13:5 (1989), 537–551
- J. Murakami, “The Yamada polynomial of spacial graphs and knit algebras”, Comm. Math. Phys., 155:3 (1993), 511–522
- T. Motohashi, Y. Ohyama, K. Taniyama, “Yamada polynomial and crossing number of spatial graphs”, Rev. Mat. Univ. Complut. Madrid, 7:2 (1994), 247–277
- Miaowang Li, Fengchun Lei, Fengling Li, A. Vesnin, “The Yamada polynomial of spatial graphs obtained by edge replacements”, J. Knot Theory Ramifications, 27:9 (2018), 1842004, 19 pp.
- Мяован Ли, Фэнчунь Лэй, Фэнлин Ли, А. Ю. Веснин, “Плотность множества корней полинома Ямады пространственных графов”, Алгебраическая топология, комбинаторика и математическая физика, Сборник статей. К 75-летию со дня рождения члена-корреспондента РАН Виктора Матвеевича Бухштабера, Труды МИАН, 305, МИАН, М., 2019, 148–161
- S. Yoshinaga, “An invariant of spatial graphs associated with $U_q(operatorname{sl}(2, mathbf C))$”, Kobe J. Math., 8:1 (1991), 25–40
- A. A. Dobrynin, A. Yu. Vesnin, “On the Yoshinaga polynomial of spatial graphs”, Kobe J. Math., 20:1-2 (2003), 31–37
- Y. Yokota, “Topological invariants of graphs in 3-space”, Topology, 35:1 (1996), 77–87
- Qingying Deng, Xian'an Jin, L. H. Kauffman, “The generalized Yamada polynomials of virtual spatial graphs”, Topology Appl., 256 (2019), 136–158
- S. R. T. Peddada, N. M. Dunfield, L. E. Zeidner, Z. R. Givans, K. A. James, J. T. Allison, “Enumeration and identification of unique 3D spatial topologies of interconnected engineering systems using spatial graphs”, J. Mech. Design, 145:10 (2023), 101708, 16 pp.
- L. Kauffman, J. Simon, K. Wolcott, Peiyi Zhao, “Invariants of theta-curves and other graphs in 3-space”, Topology Appl., 49:3 (1993), 193–216
- K. Wolcott, “The knotting of theta-curves and other graphs in $S^3$”, Geometry and topology. Manifolds, varieties, and knots (Athens, GA, 1985), Lecture Notes in Pure and Appl. Math., 105, Marcel Dekker, Inc., New York, 1987, 325–346
- J. Simon, “A topological approach to the stereochemistry on nonrigid molecules”, Graph theory and topology in chemistry (Athens, GA, 1987), Stud. Phys. Theoret. Chem., 51, Elsevier Sci. Publ., Amsterdam, 1987, 43–75
- А. Ю. Веснин, А. А. Добрынин, “Полином Ямады для графов, заузленно вложенных в трехмерное пространство”, Теория графов и ее применения, Вычислительные системы, 155, ИМ СО РАН, Новосибирск, 1996, 37–86
- H. Moriuchi, “An enumeration of theta-curves with up to seven crossings”, J. Knot Theory Ramifications, 18:2 (2009), 167–197
- Youngsik Huh, “Yamada polynomial and associated link of $theta$-curves”, Discrete Math., 347:1 (2024), 113684, 11 pp.
- L. H. Kauffman, “Invariants of graphs in three-space”, Trans. Amer. Math. Soc., 311:2 (1989), 697–710
- J. H. Conway, C. McA. Gordon, “Knots and links in spatial graphs”, J. Graph Theory, 7:4 (1983), 445–453
- M. Shimabara, “Knots in certain spatial graphs”, Tokyo J. Math., 11:2 (1988), 405–413
- M. Yamamoto, “Knots in spatial embeddings of the complete graph on four vertices”, Topology Appl., 36:3 (1990), 291–298
- V. F. R. Jones, “A polynomial invariant for knots via von Neumann algebras”, Bull. Amer. Math. Soc. (N.S.), 12:1 (1985), 103–111
- L. H. Kauffman, “State models and the Jones polynomial”, Topology, 26:3 (1987), 395–407
- F. Jaeger, “On some graph invariants related to the Kauffman polynomial”, Progress in knot theory and related topics, Travaux en Cours, 56, Hermann, Paris, 1997, 69–82
- L. H. Kauffman, “An invariant of regular isotopy”, Trans. Amer. Math. Soc., 318:2 (1990), 417–471
- Youngsik Huh, Gyo Taek Jin, “$theta$-curve polynomials and finite-type invariants”, J. Knot Theory Ramifications, 11:4 (2002), 555–564
Supplementary files
