A criterion for the strong continuity of representations of topological groups in reflexive Frechet spaces
- Authors: Shtern A.I.1,2,3
-
Affiliations:
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
- Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
- Scientific Research Institute for System Studies of the Russian Academy of Science, Moscow, Russia
- Issue: Vol 216, No 1 (2025)
- Pages: 144-152
- Section: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/306676
- DOI: https://doi.org/10.4213/sm10138
- ID: 306676
Cite item
Abstract
We obtain some necessary and sufficient conditions for the strong continuity of representations of topological groups in reflexive Frechet spaces. In particular, we show that a representation $\pi$ of a topological group $G$ in a reflexive Frechet space is continuous in the strong operator topology if and only if for some number $q$, $0\le q<1$, and some neighbourhood $V$ of the identity element $e\in G$, for any neighbourhood $U$ of the zero element in $E$, its polar $\overset\circ{U}$ in the dual space $E^*$, any vector $\xi$ in $U$ and any element $f\in\overset\circ{U}$ the inequality $|f(\pi(g)\xi-\xi)|\le q$ holds for all $g\in V$. Bibliography: 26 titles.
About the authors
Alexander Isaakovich Shtern
Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia; Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia; Scientific Research Institute for System Studies of the Russian Academy of Science, Moscow, Russia
Author for correspondence.
Email: rroww@mail.ru
Candidate of physico-mathematical sciences, Associate professor
References
- С. Банах, Теория линейных операций, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2001, 272 с.
- R. T. Moore, Measurable, continuous and smooth vectors for semi-groups and group representations, Mem. Amer. Math. Soc., 78, Amer. Math. Soc., Providence, RI, 1968, 80 pp.
- B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127, Amer. Math. Soc., Providence, RI, 1972, iii+96 pp.
- S. A. Gaal, Linear analysis and representation theory, Springer-Verlag, New York–Heidelberg, 1973, ix+688 pp.
- C. C. Moore, “Group extensions and cohomology for locally compact groups. III”, Trans. Amer. Math. Soc., 221:1 (1976), 1–33
- Z. Sasvari, Positive definite and definitizable functions, Math. Top., 2, Akademie Verlag, Berlin, 1994, 208 pp.
- J. W. Baker, B. M. Lashkarizadeh-Bami, “Representations and positive definite functions on topological semigroups”, Glasg. Math. J., 38:1 (1996), 99–111
- K.-H. Neeb, “On a theorem of S. Banach”, J. Lie Theory, 7:2 (1997), 293–300
- V. Pestov, “Review of “K.-H. Neeb, On a theorem of S. Banach, J. Lie Theory, 7:2, 1997, 293–300””, Math. Reviews, 98i:22003 (1998)
- K.-H. Neeb, D. Pickrell, “Supplements to the papers entitled: “On a theorem of S. Banach” and “The separable representations of $U(H)$””, J. Lie Theory, 10:1 (2000), 107–109
- R. Exel, M. Laca, “Continuous Fell bundles associated to measurable twisted actions”, Proc. Amer. Math. Soc., 125:3 (1997), 795–799
- B. E. Johnson, “Weak amenability of group algebras”, Bull. London Math. Soc., 23:3 (1991), 281–284
- Ф. Гринлиф, Инвариантные средние на топологических группах и их приложения, Мир, М., 1973, 136 с.
- А. М. Вершик, “Счетные группы, близкие к конечным”, прил. к кн.: Ф. Гринлиф, Инвариантные средние на топологических группах и их приложения, Мир, М., 1973, 112–135
- A. I. Shtern, “Almost convergence and its applications to the Fourier–Stieltjes localization”, Russ. J. Math. Phys., 1:1 (1993), 115–125
- A. I. Shtern, “Review of ‘F. Cabello Sanchez, Pseudo-characters and almost multiplicative functionals, J. Math. Anal. Appl., 248:1, 2000, 275–289’ ”, Math. Reviews, 2001i:22008 (2001)
- F. Cabello Sanchez, “Pseudo-characters and almost multiplicative functionals”, J. Math. Anal. Appl., 248:1 (2000), 275–289
- А. И. Штерн, “Критерии слабой и сильной непрерывности представлений топологических групп в банаховых пространствах”, Матем. сб., 193:9 (2002), 139–156
- Ю. И. Любич, Введение в теорию банаховых представлений групп, Вища школа, Харьков, 1985, 144 с.
- K. de Leeuw, I. Glicksberg, “The decomposition of certain group representations”, J. Anal. Math., 15 (1965), 135–192
- A. I. Shtern, “A condition for the strong continuity of representations of topological groups in reflexive Frechet spaces”, Russ. J. Math. Phys., 31:3 (2024), 571–573
- Х. Шефер, Топологические векторные пространства, Мир, М., 1971, 359 с.
- I. Namioka, “Separate continuity and joint continuity”, Pacific J. Math., 51:2 (1974), 515–531
- E. Saab, “Dentabilite et points extremaux dans les espaces localement convexes”, Seminaire Choquet. Initiation à l'analyse, 13 (1973/74), Secretariat Math., Paris, 1975, Exp. No. 13, 9 pp.
- L. Egghe, “On the Radon–Nikodym-property, and related topics in locally convex spaces”, Vector space measures and applications. II (Univ. Dublin, Dublin, 1977), Lecture Notes in Math., 645, Springer-Verlag, Berlin–New York, 1978, 77–90
- А. И. Штерн, “Условие слабой непрерывности представлений топологических групп в пространствах Фреше”, УМН, 79:4(478) (2024), 179–180
Supplementary files
