О разрешимости нелинейных вырожденных уравнений и оценках обратных функций

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Для непрерывного отображения $F$, действующего из одного вещественного конечномерного пространства в другое, исследован вопрос разрешимости нелинейного уравнения вида $F(x)=y$ при $y$, близких к заданному значению $F(\overline x)$. Для этого приведено и исследовано понятие $\lambda$-укорочения отображения $F$ в окрестности заданной точки $\overline x$. Доказана теорема о единственности $\lambda$-укорочения. Введено условие регулярности $\lambda$-укорочения и показано, что оно является достаточным для разрешимости рассматриваемого уравнения. Получены априорные оценки решения. Библиография: 16 названий.

Об авторах

Арам Владимирович Арутюнов

Институт проблем управления им. В. А. Трапезникова Российской академии наук, г. Москва

Автор, ответственный за переписку.
Email: arutyunov@cs.msu.ru
доктор физико-математических наук, профессор

Сергей Евгеньевич Жуковский

Институт проблем управления им. В. А. Трапезникова Российской академии наук, г. Москва

Email: s-e-zhuk@yandex.ru
доктор физико-математических наук, доцент

Список литературы

  1. Г. И. Архипов, В. А. Садовничий, В. И. Чубариков, Лекции по математическому анализу, 4-е испр. изд., Дрофа, М., 2004, 640 с.
  2. A. L. Dontchev, R. T. Rockafellar, Implicit functions and solution mappings. A view from variational analysis, Springer Ser. Oper. Res. Financ. Eng., 2nd ed., Springer, New York, 2014, xxviii+466 pp.
  3. R. G. Bartle, L. M. Graves, “Mappings between function spaces”, Trans. Amer. Math. Soc., 72:3 (1952), 400–413
  4. В. М. Тихомиров, “Теорема Люстерника о касательном пространстве и некоторые ее модификации”, Оптимальное управление. Матем. вопр. управления производством, 7, Изд-во МГУ, М., 1977, 22–30
  5. Б. Д. Гельман, “Обобщенная теорема о неявном отображении”, Функц. анализ и его прил., 35:3 (2001), 28–35
  6. B. H. Pourciau, “Analysis and optimization of Lipschitz continuous mappings”, J. Optim. Theory Appl., 22:3 (1977), 311–351
  7. Ф. Кларк, Оптимизация и негладкий анализ, Наука, М., 1988, 280 с.
  8. B. S. Mordukhovich, Variational analysis and generalized differentiation, v. 1, Grundlehren Math. Wiss., 330, Basic theory, Springer-Verlag, Berlin, 2006, xxii+579 pp.
  9. А. Ф. Измаилов, А. А. Третьяков, 2-регулярные решения нелинейных задач, Физматлит, М., 1999, 336 с.
  10. Е. Р. Аваков, “Теоремы об оценках в окрестности особой точки отображения”, Матем. заметки, 47:5 (1990), 3–13
  11. А. В. Арутюнов, “Гладкие анормальные задачи теории экстремума и анализа”, УМН, 67:3(405) (2012), 3–62
  12. А. Ф. Измаилов, “Теоремы о представлении семейств нелинейных отображений и теоремы о неявной функции”, Матем. заметки, 67:1 (2000), 57–68
  13. А. В. Арутюнов, “Существование вещественных решений нелинейных уравнений без априорных предположений нормальности”, Матем. заметки, 109:1 (2021), 3–18
  14. А. В. Арутюнов, С. Е. Жуковский, “Устойчивость вещественных решений нелинейных уравнений и ее приложения”, Труды МИАН, 323, Теория функций многих действительных переменных и ее приложения (2023), 5–16
  15. Г. Харди, Дж. И. Литтльвуд, Г. Полиа, Неравенства, ИЛ, М., 1948, 456 с.
  16. А. Картан, Дифференциальное исчисление. Дифференциальные формы, Мир, М., 1971, 392 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Арутюнов А.В., Жуковский С.Е., 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).