On the connectedness of the automorphism group of an affine toric variety
- Autores: Kikteva V.V.1
-
Afiliações:
- Faculty of Computer Science, National Research University "Higher School of Economics"
- Edição: Volume 215, Nº 10 (2024)
- Páginas: 89-113
- Seção: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/265604
- DOI: https://doi.org/10.4213/sm10080
- ID: 265604
Citar
Resumo
Palavras-chave
Sobre autores
Veronika Kikteva
Faculty of Computer Science, National Research University "Higher School of Economics"
Email: VVKikteva@yandex.ru
ORCID ID: 0009-0006-0230-8959
without scientific degree, no status
Bibliografia
- C. P. Ramanujam, “A note on automorphism groups of algebraic varieties”, Math. Ann., 156 (1964), 25–33
- V. L. Popov, “On infinite dimensional algebraic transformation groups”, Transform. Groups, 19:2 (2014), 549–568
- И. В. Аржанцев, С. А. Гайфуллин, “Кольца Кокса, полугруппы и автоморфизмы аффинных многообразий”, Матем. сб., 201:1 (2010), 3–24
- D. Cox, “The homogeneous coordinate ring of a toric variety”, J. Algebraic Geom., 4:1 (1995), 17–50
- M. Demazure, “Sous-groupes algebriques de rang maximum du groupe de Cremona”, Ann. Sci. Ec. Norm. Super. (4), 3:4 (1970), 507–588
- И. Р. Шафаревич, “О некоторых бесконечномерных группах. II”, Изв. АН СССР. Сер. матем., 45:1 (1981), 214–226
- D. A. Cox, J. B. Little, H. K. Schenck, Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011, xxiv+841 pp.
- W. Fulton, Introduction to toric varieties, Ann. of Math. Stud., 131, William Roever Lectures Geom., Princeton Univ. Press, Princeton, NJ, 1993, xii+157 pp.
- И. Р. Шафаревич, Основы алгебраической геометрии, 4-е изд., МЦНМО, М., 2018, 590 с.
- I. Arzhantsev, I. Bazhov, “On orbits of the automorphism group on an affine toric variety”, Cent. Eur. J. Math., 11:10 (2013), 1713–1724
- I. Arzhantsev, U. Derenthal, J. Hausen, A. Laface, Cox rings, Cambridge Stud. Adv. Math., 144, Cambridge Univ. Press, Cambridge, 2015, viii+530 pp.
- I. Arzhantsev, M. Zaidenberg, “Acyclic curves and group actions on affine toric surfaces”, Affine algebraic geometry (Osaka, 2011), World Sci. Publ., Hackensack, NJ, 2013, 1–41
Arquivos suplementares
