Hausdorff distances between couplings and optimal transportation with a parameter

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider optimal transportation of measures on metric and topological spaces in the case where the cost function and marginal distributions depend on a parameter with values in a metric space. The Hausdorff distance between the sets of probability measures with prescribed marginals is estimated in terms of the distances between the marginals themselves. This estimate is used to prove the continuity of the cost of optimal transportation with respect to the parameter in the case of the continuous dependence of the cost function and marginal distributions on this parameter. Existence of approximate optimal plans continuous with respect to the parameter is established. It is shown that the optimal plan is continuous with respect to the parameter in the case of uniqueness. However, examples are constructed when there is no continuous selection of optimal plans. Another application of the estimate for the Hausdorff distance concerns discrete approximations of the transportation problem. Finally, a general result on the convergence of Monge optimal mappings is proved.

Авторлар туралы

Vladimir Bogachev

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; HSE University

Email: vibogach@mail.ru
ORCID iD: 0000-0001-5249-2965
Scopus Author ID: 7005751293
ResearcherId: P-6316-2016
Doctor of physico-mathematical sciences, Professor

Svetlana Popova

Moscow Institute of Physics and Technology (National Research University); HSE University

Хат алмасуға жауапты Автор.
Email: vibogach@mail.ru
ORCID iD: 0000-0001-6901-5364
Scopus Author ID: 56136678400
ResearcherId: AAG-6922-2019

Candidate of physico-mathematical sciences, no status

Әдебиет тізімі

  1. K. A. Afonin, V. I. Bogachev, “Kantorovich type topologies on spaces of measures and convergence of barycenters”, Commun. Pure Appl. Anal., 22:2 (2023), 597–612
  2. J.-J. Alibert, G. Bouchitte, T. Champion, “A new class of costs for optimal transport planning”, European J. Appl. Math., 30:6 (2019), 1229–1263
  3. L. Ambrosio, E. Brue, D. Semola, Lectures on optimal transport, Unitext, 130, La Mat. per il 3+2, Springer, Cham, 2021, ix+250 pp.
  4. L. Ambrosio, N. Gigli, “A user's guide to optimal transport”, Modelling and optimisation of flows on networks, Lecture Notes in Math., 2062, Fond. CIME/CIME Found. Subser., Springer, Heidelberg, 2013, 1–155
  5. L. Ambrosio, A. Pratelli, “Existence and stability results in the $L^1$ theory of optimal transportation”, Optimal transportation and applications (Martina Franca, 2001), Lecture Notes in Math., 1813, Springer, Berlin, 2003, 123–160
  6. M. L. Avendaño-Garrido, J. R. Gabriel-Argüelles, L.-T. Quintana, J. Gonzalez-Hernandez, “An approximation scheme for the Kantorovich–Rubinstein problem on compact spaces”, J. Numer. Math., 26:2 (2018), 63–75
  7. J. Backhoff-Veraguas, M. Beiglböck, G. Pammer, “Existence, duality, and cyclical monotonicity for weak transport costs”, Calc. Var. Partial Differential Equations, 58:6 (2019), 203, 28 pp.
  8. J. Backhoff-Veraguas, G. Pammer, “Applications of weak transport theory”, Bernoulli, 28:1 (2022), 370–394
  9. J. Bergin, “On the continuity of correspondences on sets of measures with restricted marginals”, Econom. Theory, 13:2 (1999), 471–481
  10. S. Bobkov, M. Ledoux, One-dimensional empirical measures, order statistics, and Kantorovich transport distances, Mem. Amer. Math. Soc., 261, no. 1259, Amer. Math. Soc., Providence, RI, 2019, v+126 pp.
  11. В. И. Богачев, Основы теории меры, т. 1, 2, изд. 3-е, испр. и доп., НИЦ “Регулярная и хаотическая динамика”, Ин-т компьютерных исследований, М.–Ижевск, 2021, 584 с., 688 с.
  12. V. I. Bogachev, Weak convergence of measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018, xii+286 pp.
  13. В. И. Богачев, “Задача Канторовича оптимальной транспортировки мер: новые направления исследований”, УМН, 77:5(467) (2022), 3–52
  14. В. И. Богачев, “Задачи Канторовича с параметром и ограничениями на плотности”, Сиб. матем. журн., 63:1 (2022), 42–57
  15. В. И. Богачев, А. Н. Доледенок, И. И. Малофеев, “Задача Канторовича с параметром и ограничениями на плотность”, Матем. заметки, 110:6 (2021), 922–926
  16. В. И. Богачев, А. Н. Калинин, С. Н. Попова, “О равенстве значений в задачах Монжа и Канторовича”, Вероятность и статистика. 25, Посвящается памяти Владимира Николаевича Судакова, Зап. науч. сем. ПОМИ, 457, ПОМИ, СПб., 2017, 53–73
  17. В. И. Богачев, А. В. Колесников, “Задача Монжа–Канторовича: достижения, связи и перспективы”, УМН, 67:5(407) (2012), 3–110
  18. V. I. Bogachev, I. I. Malofeev, “Kantorovich problems and conditional measures depending on a parameter”, J. Math. Anal. Appl., 486:1 (2020), 123883, 30 pp.
  19. В. И. Богачев, С. Н. Попова, “О задаче Канторовича с параметром”, Докл. РАН. Матем., информ., проц. упр., 507 (2022), 26–28
  20. В. И. Богачев, А. В. Резбаев, “Существование решений нелинейной задачи Канторовича оптимальной транспортировки”, Матем. заметки, 112:3 (2022), 360–370
  21. B. Bonnet, H. Frankowska, “Differential inclusions in Wasserstein spaces: the Cauchy–Lipschitz framework”, J. Differential Equations, 271 (2021), 594–637
  22. C. Clason, D. A. Lorenz, H. Mahler, B. Wirth, “Entropic regularization of continuous optimal transport problems”, J. Math. Anal. Appl., 494:1 (2021), 124432, 22 pp.
  23. J. Dedecker, C. Prieur, P. Raynaud De Fitte, “Parametrized Kantorovich–Rubinštein theorem and application to the coupling of random variables”, Dependence in probability and statistics, Lect. Notes Stat., 187, Springer, New York, 2006, 105–121
  24. L. De Pascale, J. Louet, F. Santambrogio, “The Monge problem with vanishing gradient penalization: vortices and asymptotic profile”, J. Math. Pures Appl. (9), 106:2 (2016), 237–279
  25. A. Figalli, F. Glaudo, An invitation to optimal transport, Wasserstein distances, and gradient flows, EMS Textbk. Math., EMS Press, Berlin, 2021, vi+136 pp.
  26. M. Ghossoub, D. Saunders, “On the continuity of the feasible set mapping in optimal transport”, Econ. Theory Bull., 9:1 (2021), 113–117
  27. N. Gozlan, C. Roberto, P.-M. Samson, P. Tetali, “Kantorovich duality for general transport costs and applications”, J. Funct. Anal., 273:11 (2017), 3327–3405
  28. S. Graf, H. Luschgy, Foundations of quantization for probability distributions, Lecture Notes in Math., 1730, Springer-Verlag, Berlin, 2000, x+230 pp.
  29. M. Katětov, “On real-valued functions in topological spaces”, Fund. Math., 38 (1951), 85–91
  30. S. Kuksin, V. Nersesyan, A. Shirikyan, “Exponential mixing for a class of dissipative PDEs with bounded degenerate noise”, Geom. Funct. Anal., 30:1 (2020), 126–187
  31. D. A. Lorenz, P. Manns, C. Meyer, “Quadratically regularized optimal transport”, Appl. Math. Optim., 83:3 (2021), 1919–1949
  32. И. И. Малофеев, “Измеримая зависимость условных мер от параметра”, Докл. РАН, 470:1 (2016), 13–17
  33. E. Michael, “Continuous selections. I”, Ann. of Math. (2), 63:2 (1956), 361–382
  34. E. Michael, “A selection theorem”, Proc. Amer. Math. Soc., 17 (1966), 1404–1406
  35. A. Pratelli, “On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation”, Ann. Inst. Henri Poincare Probab. Stat., 43:1 (2007), 1–13
  36. S. T. Rachev, L. Rüschendorf, Mass transportation problems, v. I, Probab. Appl. (N.Y.), Theory, Springer-Verlag, New York, 1998, xxvi+508 pp.
  37. D. Ramachandran, L. Rüschendorf, “A general duality theorem for marginal problems”, Probab. Theory Related Fields, 101:3 (1995), 311–319
  38. D. Repovš, P. V. Semenov, Continuous selections of multivalued mappings, Math. Appl., 455, Kluwer Acad. Publ., Dordrecht, 1998, viii+356 pp.
  39. F. Santambrogio, Optimal transport for applied mathematicians. Calculus of variations, PDEs, and modeling, Progr. Nonlinear Differential Equations Appl., 87, Birkhäuser/Springer, Cham, 2015, xxvii+353 pp.
  40. A. Savchenko, M. Zarichnyi, “Correspondences of probability measures with restricted marginals”, Proc. Intern. Geom. Center, 7:4 (2014), 34–39
  41. A. M. Vershik, P. B. Zatitskiy, F. V. Petrov, “Geometry and dynamics of admissible metrics in measure spaces”, Cent. Eur. J. Math., 11:3 (2013), 379–400
  42. C. Villani, Topics in optimal transportation, Grad. Stud. Math., 58, Amer. Math. Soc., Providence, RI, 2003, xvi+370 pp.
  43. C. Villani, Optimal transport. Old and new, Grundlehren Math. Wiss., 338, Springer, New York, 2009, xxii+973 pp.
  44. D. Vögler, “Geometry of Kantorovich polytopes and support of optimizers for repulsive multi-marginal optimal transport on finite state spaces”, J. Math. Anal. Appl., 502:1 (2021), 125147, 31 pp.
  45. Feng-Yu Wang, Jie-Xiang Zhu, “Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds”, Ann. Inst. Henri Poincare Probab. Stat., 59:1 (2023), 437–475
  46. Xicheng Zhang, “Stochastic Monge–Kantorovich problem and its duality”, Stochastics, 85:1 (2013), 71–84

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Богачев В.I., Попова С.N., 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».