Hausdorff distances between couplings and optimal transportation with a parameter
- Авторлар: Bogachev V.I.1,2, Popova S.N.3,2
-
Мекемелер:
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- HSE University
- Moscow Institute of Physics and Technology (National Research University)
- Шығарылым: Том 215, № 1 (2024)
- Беттер: 33-58
- Бөлім: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/251789
- DOI: https://doi.org/10.4213/sm9920
- ID: 251789
Дәйексөз келтіру
Аннотация
We consider optimal transportation of measures on metric and topological spaces in the case where the cost function and marginal distributions depend on a parameter with values in a metric space. The Hausdorff distance between the sets of probability measures with prescribed marginals is estimated in terms of the distances between the marginals themselves. This estimate is used to prove the continuity of the cost of optimal transportation with respect to the parameter in the case of the continuous dependence of the cost function and marginal distributions on this parameter. Existence of approximate optimal plans continuous with respect to the parameter is established. It is shown that the optimal plan is continuous with respect to the parameter in the case of uniqueness. However, examples are constructed when there is no continuous selection of optimal plans. Another application of the estimate for the Hausdorff distance concerns discrete approximations of the transportation problem. Finally, a general result on the convergence of Monge optimal mappings is proved.
Авторлар туралы
Vladimir Bogachev
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; HSE University
Email: vibogach@mail.ru
ORCID iD: 0000-0001-5249-2965
Scopus Author ID: 7005751293
ResearcherId: P-6316-2016
Doctor of physico-mathematical sciences, Professor
Svetlana Popova
Moscow Institute of Physics and Technology (National Research University); HSE University
Хат алмасуға жауапты Автор.
Email: vibogach@mail.ru
ORCID iD: 0000-0001-6901-5364
Scopus Author ID: 56136678400
ResearcherId: AAG-6922-2019
Candidate of physico-mathematical sciences, no status
Әдебиет тізімі
- K. A. Afonin, V. I. Bogachev, “Kantorovich type topologies on spaces of measures and convergence of barycenters”, Commun. Pure Appl. Anal., 22:2 (2023), 597–612
- J.-J. Alibert, G. Bouchitte, T. Champion, “A new class of costs for optimal transport planning”, European J. Appl. Math., 30:6 (2019), 1229–1263
- L. Ambrosio, E. Brue, D. Semola, Lectures on optimal transport, Unitext, 130, La Mat. per il 3+2, Springer, Cham, 2021, ix+250 pp.
- L. Ambrosio, N. Gigli, “A user's guide to optimal transport”, Modelling and optimisation of flows on networks, Lecture Notes in Math., 2062, Fond. CIME/CIME Found. Subser., Springer, Heidelberg, 2013, 1–155
- L. Ambrosio, A. Pratelli, “Existence and stability results in the $L^1$ theory of optimal transportation”, Optimal transportation and applications (Martina Franca, 2001), Lecture Notes in Math., 1813, Springer, Berlin, 2003, 123–160
- M. L. Avendaño-Garrido, J. R. Gabriel-Argüelles, L.-T. Quintana, J. Gonzalez-Hernandez, “An approximation scheme for the Kantorovich–Rubinstein problem on compact spaces”, J. Numer. Math., 26:2 (2018), 63–75
- J. Backhoff-Veraguas, M. Beiglböck, G. Pammer, “Existence, duality, and cyclical monotonicity for weak transport costs”, Calc. Var. Partial Differential Equations, 58:6 (2019), 203, 28 pp.
- J. Backhoff-Veraguas, G. Pammer, “Applications of weak transport theory”, Bernoulli, 28:1 (2022), 370–394
- J. Bergin, “On the continuity of correspondences on sets of measures with restricted marginals”, Econom. Theory, 13:2 (1999), 471–481
- S. Bobkov, M. Ledoux, One-dimensional empirical measures, order statistics, and Kantorovich transport distances, Mem. Amer. Math. Soc., 261, no. 1259, Amer. Math. Soc., Providence, RI, 2019, v+126 pp.
- В. И. Богачев, Основы теории меры, т. 1, 2, изд. 3-е, испр. и доп., НИЦ “Регулярная и хаотическая динамика”, Ин-т компьютерных исследований, М.–Ижевск, 2021, 584 с., 688 с.
- V. I. Bogachev, Weak convergence of measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018, xii+286 pp.
- В. И. Богачев, “Задача Канторовича оптимальной транспортировки мер: новые направления исследований”, УМН, 77:5(467) (2022), 3–52
- В. И. Богачев, “Задачи Канторовича с параметром и ограничениями на плотности”, Сиб. матем. журн., 63:1 (2022), 42–57
- В. И. Богачев, А. Н. Доледенок, И. И. Малофеев, “Задача Канторовича с параметром и ограничениями на плотность”, Матем. заметки, 110:6 (2021), 922–926
- В. И. Богачев, А. Н. Калинин, С. Н. Попова, “О равенстве значений в задачах Монжа и Канторовича”, Вероятность и статистика. 25, Посвящается памяти Владимира Николаевича Судакова, Зап. науч. сем. ПОМИ, 457, ПОМИ, СПб., 2017, 53–73
- В. И. Богачев, А. В. Колесников, “Задача Монжа–Канторовича: достижения, связи и перспективы”, УМН, 67:5(407) (2012), 3–110
- V. I. Bogachev, I. I. Malofeev, “Kantorovich problems and conditional measures depending on a parameter”, J. Math. Anal. Appl., 486:1 (2020), 123883, 30 pp.
- В. И. Богачев, С. Н. Попова, “О задаче Канторовича с параметром”, Докл. РАН. Матем., информ., проц. упр., 507 (2022), 26–28
- В. И. Богачев, А. В. Резбаев, “Существование решений нелинейной задачи Канторовича оптимальной транспортировки”, Матем. заметки, 112:3 (2022), 360–370
- B. Bonnet, H. Frankowska, “Differential inclusions in Wasserstein spaces: the Cauchy–Lipschitz framework”, J. Differential Equations, 271 (2021), 594–637
- C. Clason, D. A. Lorenz, H. Mahler, B. Wirth, “Entropic regularization of continuous optimal transport problems”, J. Math. Anal. Appl., 494:1 (2021), 124432, 22 pp.
- J. Dedecker, C. Prieur, P. Raynaud De Fitte, “Parametrized Kantorovich–Rubinštein theorem and application to the coupling of random variables”, Dependence in probability and statistics, Lect. Notes Stat., 187, Springer, New York, 2006, 105–121
- L. De Pascale, J. Louet, F. Santambrogio, “The Monge problem with vanishing gradient penalization: vortices and asymptotic profile”, J. Math. Pures Appl. (9), 106:2 (2016), 237–279
- A. Figalli, F. Glaudo, An invitation to optimal transport, Wasserstein distances, and gradient flows, EMS Textbk. Math., EMS Press, Berlin, 2021, vi+136 pp.
- M. Ghossoub, D. Saunders, “On the continuity of the feasible set mapping in optimal transport”, Econ. Theory Bull., 9:1 (2021), 113–117
- N. Gozlan, C. Roberto, P.-M. Samson, P. Tetali, “Kantorovich duality for general transport costs and applications”, J. Funct. Anal., 273:11 (2017), 3327–3405
- S. Graf, H. Luschgy, Foundations of quantization for probability distributions, Lecture Notes in Math., 1730, Springer-Verlag, Berlin, 2000, x+230 pp.
- M. Katětov, “On real-valued functions in topological spaces”, Fund. Math., 38 (1951), 85–91
- S. Kuksin, V. Nersesyan, A. Shirikyan, “Exponential mixing for a class of dissipative PDEs with bounded degenerate noise”, Geom. Funct. Anal., 30:1 (2020), 126–187
- D. A. Lorenz, P. Manns, C. Meyer, “Quadratically regularized optimal transport”, Appl. Math. Optim., 83:3 (2021), 1919–1949
- И. И. Малофеев, “Измеримая зависимость условных мер от параметра”, Докл. РАН, 470:1 (2016), 13–17
- E. Michael, “Continuous selections. I”, Ann. of Math. (2), 63:2 (1956), 361–382
- E. Michael, “A selection theorem”, Proc. Amer. Math. Soc., 17 (1966), 1404–1406
- A. Pratelli, “On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation”, Ann. Inst. Henri Poincare Probab. Stat., 43:1 (2007), 1–13
- S. T. Rachev, L. Rüschendorf, Mass transportation problems, v. I, Probab. Appl. (N.Y.), Theory, Springer-Verlag, New York, 1998, xxvi+508 pp.
- D. Ramachandran, L. Rüschendorf, “A general duality theorem for marginal problems”, Probab. Theory Related Fields, 101:3 (1995), 311–319
- D. Repovš, P. V. Semenov, Continuous selections of multivalued mappings, Math. Appl., 455, Kluwer Acad. Publ., Dordrecht, 1998, viii+356 pp.
- F. Santambrogio, Optimal transport for applied mathematicians. Calculus of variations, PDEs, and modeling, Progr. Nonlinear Differential Equations Appl., 87, Birkhäuser/Springer, Cham, 2015, xxvii+353 pp.
- A. Savchenko, M. Zarichnyi, “Correspondences of probability measures with restricted marginals”, Proc. Intern. Geom. Center, 7:4 (2014), 34–39
- A. M. Vershik, P. B. Zatitskiy, F. V. Petrov, “Geometry and dynamics of admissible metrics in measure spaces”, Cent. Eur. J. Math., 11:3 (2013), 379–400
- C. Villani, Topics in optimal transportation, Grad. Stud. Math., 58, Amer. Math. Soc., Providence, RI, 2003, xvi+370 pp.
- C. Villani, Optimal transport. Old and new, Grundlehren Math. Wiss., 338, Springer, New York, 2009, xxii+973 pp.
- D. Vögler, “Geometry of Kantorovich polytopes and support of optimizers for repulsive multi-marginal optimal transport on finite state spaces”, J. Math. Anal. Appl., 502:1 (2021), 125147, 31 pp.
- Feng-Yu Wang, Jie-Xiang Zhu, “Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds”, Ann. Inst. Henri Poincare Probab. Stat., 59:1 (2023), 437–475
- Xicheng Zhang, “Stochastic Monge–Kantorovich problem and its duality”, Stochastics, 85:1 (2013), 71–84
Қосымша файлдар
