Diffuse orthogonally additive operators
- Authors: Abasov N.M.1, Dzhusoeva N.A.2, Pliev M.A.3,4
-
Affiliations:
- Bauman Moscow State Technical University
- North Ossetian State University after Kosta Levanovich Khetagurov
- Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences
- North Caucasus Center for Mathematical Research VSC RAS
- Issue: Vol 215, No 1 (2024)
- Pages: 3-32
- Section: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/251788
- DOI: https://doi.org/10.4213/sm9909
- ID: 251788
Cite item
Abstract
About the authors
Nariman Magamedovich Abasov
Bauman Moscow State Technical University
Email: abasovn@mail.ru
Candidate of physico-mathematical sciences, Associate professor
Nonna Anatolevna Dzhusoeva
North Ossetian State University after Kosta Levanovich Khetagurov
Email: djusoevanonna@rambler.ru
Candidate of physico-mathematical sciences, Associate professor
Marat Amurkhanovich Pliev
Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences; North Caucasus Center for Mathematical Research VSC RAS
Email: plimarat@yandex.ru
Candidate of physico-mathematical sciences, Head Scientist Researcher
References
- А. В. Бухвалов, “Об интегральном представлении линейных операторов”, Исследования по линейным операторам и теории функций. V, Зап. науч. сем. ЛОМИ, 47, Изд-во «Наука», Ленинград. отд., Л., 1974, 5–14
- Б. З. Вулих, Введение в теорию полуупорядоченных пространств, Физматгиз, М., 1961, 407 с.
- Н. А. Джусоева, С. Ю. Итарова, “Об ортогонально аддитивных операторах в РНП”, Матем. заметки, 113:1 (2023), 58–74
- Е. В. Колесников, “Диффузная и атомическая составляющие положительного оператора”, Сиб. матем. журн., 39:2 (1998), 333–342
- М. А. Красносельский, П. П. Забрейко, Е. И. Пустыльник, П. Е. Соболевский, Интегральные операторы в пространствах суммируемых функций, Наука, М., 1966, 499 с.
- К. К. Кудайбергенов, Б. О. Нуржанов, “Частичные порядки на $*$-регулярных кольцах”, Уфимск. матем. журн., 15:1 (2023), 35–43
- В. Л. Левин, Выпуклый анализ в пространствах измеримых функций и его применение в математике и экономике, Наука, М., 1985, 352 с.
- М. А. Плиев, М. М. Попов, “О продолжении абстрактных операторов Урысона”, Сиб. матем. журн., 57:3 (2016), 700–708
- N. M. Abasov, “On a band generated by a disjointness preserving orthogonally additive operator”, Lobachevskii J. Math., 42:5 (2021), 851–856
- N. M. Abasov, “On band preserving orthogonally additive operators”, Сиб. электрон. матем. изв., 18:1 (2021), 495–510
- N. Abasov, “Completely additive and $C$-compact operators in lattice-normed spaces”, Ann. Funct. Anal., 11:4 (2020), 914–928
- N. Abasov, M. Pliev, “Disjointness-preserving orthogonally additive operators in vector lattices”, Banach J. Math. Anal., 12:3 (2018), 730–750
- N. Abasov, M. Pliev, “Dominated orthogonally additive operators in lattice-normed spaces”, Adv. Oper. Theory, 4:1 (2019), 251–264
- Y. A. Abramovich, C. D. Aliprantis, An invitation to operator theory, Grad. Stud. Math., 50, Amer. Math. Soc., Providence, RI, 2002, xiv+530 pp.
- C. D. Aliprantis, O. Burkinshaw, Positive operators, Springer, Dordrecht, 2006, xx+376 pp.
- J. Appell, P. P. Zabrejko, Nonlinear superposition operators, Cambridge Tracts in Math., 45, Cambridge Univ. Press, Cambridge, 1990, viii+311 pp.
- S. Aupov, K. Kudaybergenov, “Ring isomorphisms of Murray–von Neumann algebras”, J. Funct. Anal., 280:5 (2021), 108891, 28 pp.
- M. A. Ben Amor, M. Pliev, “Laterally continuous part of an abstract Uryson operator”, Int. J. Math. Anal. (Ruse), 7:58 (2013), 2853–2860
- A. Ber, V. Chilin, F. Sukochev, “Derivations in disjointly complete commutative regular algebras”, Quaestiones Math., 2024 (to appear)
- L. Drewnowski, W. Orlicz, “Continuity and representation of orthogonally-additive functionals”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 17 (1969), 647–653
- H. Le Dret, Nonlinear elliptic partial differential equations. An introduction, Universitext, Springer, Cham, 2018, x+253 pp.
- N. Erkurşun Özcan, M. Pliev, “On orthogonally additive operators in $C$-complete vector lattices”, Banach J. Math. Anal., 16:1 (2022), 6, 25 pp.
- W. Feldman, “A Radon–Nikodym theorem for nonlinear functionals on Banach lattices”, Proc. Amer. Math. Soc. Ser. B, 9 (2022), 150–158
- W. Feldman, “A factorization for orthogonally additive operators on Banach lattices”, J. Math. Anal. Appl., 472:1 (2019), 238–245
- O. Fotiy, A. Gumenchuk, I. Krasikova, M. Popov, “On sums of narrow and compact operators”, Positivity, 24:1 (2020), 69–80
- O. Fotiy, I. Krasikova, M. Pliev, M. Popov, “Order continuity of orthogonally additive operators”, Results Math., 77:1 (2022), 5, 19 pp.
- C. B. Huijsmans, B. de Pagter, “Disjointness preserving and diffuse operators”, Compositio Math., 79:3 (1991), 351–374
- J. M. Mazon, S. Segura de Leon, “Order bounded orthogonally additive operators”, Rev. Roumaine Math. Pures Appl., 35:4 (1990), 329–353
- M. Marcus, V. J. Mizel, “Representation theorems for nonlinear disjointly additive functionals and operators on Sobolev spaces”, Trans. Amer. Math. Soc., 228 (1977), 1–45
- M. Marcus, V. J. Mizel, “Extension theorems of Hahn–Banach type for nonlinear disjointly additive functionals and operators in Lebesgue spaces”, J. Funct. Anal., 24:4 (1977), 303–335
- V. Mykhaylyuk, M. Pliev, M. Popov, “The lateral order on Riesz spaces and orthogonally additive operators”, Positivity, 25:2 (2021), 291–327
- V. Mykhaylyuk, M. Popov, “$varepsilon$-shading operator on Riesz spaces and order continuity of orthogonally additive operators”, Results Math., 77:5 (2022), 209, 30 pp.
- B. de Pagter, “The components of a positive operator”, Nederl. Akad. Wetensch. Indag. Math., 45:5 (1983), 229–241
- M. Pliev, “On $C$-compact orthogonally additive operators”, J. Math. Anal. Appl., 494:1 (2021), 124594, 15 pp.
- M. Pliev, K. Ramdane, “Order unbounded orthogonally additive operators in vector lattices”, Mediterr. J. Math., 15:2 (2018), 55, 20 pp.
- M. A. Pliev, F. Polat, M. R. Weber, “Narrow and $C$-compact orthogonally additive operators in lattice-normed spaces”, Results Math., 74:4 (2019), 157, 19 pp.
- M. Pliev, M. Popov, “Representation theorems for regular operators”, Math. Nachr., 2023, 1–18, Publ. online
- M. Pliev, M. Popov, “Narrow orthogonally additive operators”, Positivity, 18:4 (2014), 641–667
- M. Pliev, F. Sukochev, “The Kalton and Rosenthal type decomposition of operators in Köthe–Bochner spaces”, J. Math. Anal. Appl., 500:2 (2021), 125142, 20 pp.
- M. Pliev, F. Sukochev, “Narrow operators on tensor products Köthe spaces”, J. Math. Anal. Appl., 522:1 (2023), 126950, 18 pp.
- M. A. Pliev, M. R. Weber, “Disjointness and order projections in the vector lattices of abstract Uryson operators”, Positivity, 20:3 (2016), 695–707
- A. Ponosov, E. Stepanov, “Atomic operators, random dynamical systems and invariant measures”, Алгебра и анализ, 26:4 (2014), 148–194
- M. Popov, “Banach lattices of orthogonally additive operators”, J. Math. Anal. Appl., 514:1 (2022), 126279, 26 pp.
- M. Popov, B. Randrianantoanina, Narrow operators on function spaces and vector lattices, De Gruyter Stud. Math., 45, Walter de Gruyter & Co., Berlin, 2013, xiv+319 pp.
- S. Segura de Leon, “Bukhvalov type characterizations of Urysohn operators”, Studia Math., 99:3 (1991), 199–220
- P. Tradacete, I. Villanueva, “Valuations on Banach lattices”, Int. Math. Res. Not. IMRN, 2020:1 (2020), 287–319
- L. Weis, “On the representation of order continuous operators by random measures”, Trans. Amer. Math. Soc., 285:2 (1984), 535–563
Supplementary files
