Random walks conditioned to stay nonnegative and branching processes in nonfavorable random environment
- 作者: Vatutin V.A.1, Dong C.2, Dyakonova E.E.1
-
隶属关系:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Xidian University
- 期: 卷 214, 编号 11 (2023)
- 页面: 3-36
- 栏目: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/147921
- DOI: https://doi.org/10.4213/sm9908
- ID: 147921
如何引用文章
详细
Let {Sn,n⩾0} be a random walk with increments that belong (without centering) to the domain of attraction of an alpha-stable law, that is, there exists a process {Yt,t⩾0} such that Snt/an ⇒ Yt, t⩾0, as n→∞ for some scaling constants an. Assuming that S0=o(an) and Sn⩽φ(n)=o(an), we prove several conditional limit theorems for the distribution of the random variable Sn−m given that m=o(n) and min0⩽k⩽nSk⩾0. These theorems supplement the assertions established by Caravenna and Chaumont in 2013. Our results are used to study the population size of a critical branching process evolving in an unfavourable environment.
作者简介
Vladimir Vatutin
Steklov Mathematical Institute of Russian Academy of Sciences
编辑信件的主要联系方式.
Email: vatutin@mi-ras.ru
Doctor of physico-mathematical sciences, Professor
Congzao Dong
Xidian University
Email: czdong@xidian.edu.cn
Elena Dyakonova
Steklov Mathematical Institute of Russian Academy of Sciences
Email: elena@mi-ras.ru
Doctor of physico-mathematical sciences, Head Scientist Researcher
参考
- V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673
- В. И. Афанасьев, “Принцип инвариантности для критического процесса Гальтона–Ватсона, достигающего высокого уровня”, Теория вероятн. и ее примен., 55:4 (2010), 625–643
- V. I. Afanasyev, C. Böinghoff, G. Kersting, V. A. Vatutin, “Limit theorems for weakly subcritical branching processes in random environment”, J. Theoret. Probab., 25:3 (2012), 703–732
- J. Bertoin, R. A. Doney, “On conditioning a random walk to stay nonnegative”, Ann. Probab., 22:4 (1994), 2152–2167
- N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp.
- E. Bolthausen, “On a functional central limit theorem for random walks conditioned to stay positive”, Ann. Probab., 4:3 (1976), 480–485
- A. Bryn-Jones, R. A. Doney, “A functional limit theorem for random walk conditioned to stay non-negative”, J. London Math. Soc. (2), 74:1 (2006), 244–258
- L. Chaumont, “Excursion normalisee, meandre at pont pour les processus de Levy stables”, Bull. Sci. Math., 121:5 (1997), 377–403
- F. Caravenna, “A local limit theorem for random walks conditioned to stay positive”, Probab. Theory Related Fields, 133:4 (2005), 508–530
- F. Caravenna, L. Chaumont, “Invariance principles for random walks conditioned to stay positive”, Ann. Inst. Henri Poincare Probab. Stat., 44:1 (2008), 170–190
- F. Caravenna, L. Chaumont, “An invariance principle for random walk bridges conditioned to stay positive”, Electron. J. Probab., 18 (2013), 60, 32 pp.
- L. Chaumont, R. A. Doney, “Invariance principles for local times at the maximum of random walks and Levy processes”, Ann. Probab., 38:4 (2010), 1368–1389
- F. den Hollander, Random polymers, Ecole d'Ete de Probabilites de Saint-Flour XXXVII – 2007, Lecture Notes in Math., 1974, Springer-Verlag, Berlin, 2009, xiv+258 pp.
- R. A. Doney, “Local behaviour of first passage probabilities”, Probab. Theory Related Fields, 152:3-4 (2012), 559–588
- В. Феллер, Введение в теорию вероятностей и ее приложения, т. 2, Мир, М., 1967, 752 с.
- Б. В. Гнеденко, А. Н. Колмогоров, Предельные распределения для сумм независимых случайных величин, Гостехиздат, М.–Л., 1949, 264 с.
- D. L. Iglehart, “Functional central limit theorems for random walks conditioned to stay positive”, Ann. Probab., 2:2 (1974), 608–619
- W. D. Kaigh, “An invariance principle for random walk conditioned by a late return to zero”, Ann. Probab., 4:1 (1976), 115–121
- G. Kersting, V. Vatutin, Discrete time branching processes in random environment, Math. Stat. Ser., John Wiley & Sons, London; ISTE, Hoboken, NJ, 2017, xiv+286 pp.
- T. M. Liggett, “An invariance principle for conditioned sums of independent random variables”, J. Math. Mech., 18:6 (1968), 559–570
- Б. А. Рогозин, “Распределение первого лестничного момента и высоты и флуктуации случайного блуждания”, Теория вероятн. и ее примен., 16:4 (1971), 593—613
- Е. Сенета, Правильно меняющиеся функции, Наука, М., 1985, 142 с.
- Я. Г. Синай, “О распределении первой положительной суммы для последовательности независимых случайных величин”, Теория вероятн. и ее примен., 2:1 (1957), 126–135
- C. Stone, “A local limit theorem for nonlattice multi-dimensional distribution functions”, Ann. Math. Statist., 36:2 (1965), 546–551
- V. A. Vatutin, V. Wachtel, “Local probabilities for random walks conditioned to stay positive”, Probab. Theory Related Fields, 143:1-2 (2009), 177–217
- V. Vatutin, E. Dyakonova, “Path to survival for the critical branching processes in a random environment”, J. Appl. Probab., 54:2 (2017), 588–602
- В. А. Ватутин, Е. Е. Дьяконова, “Критические ветвящиеся процессы, эволюционирующие в неблагоприятной случайной среде”, Дискрет. матем., 34:3 (2022), 20–33
- В. А. Ватутин, Е. Е. Дьяконова, “Размер популяции критического ветвящегося процесса, эволюционирующего в неблагоприятной среде”, Теория вероятн. и ее примен., 68:3 (2023), 509–531
补充文件
