Random walks conditioned to stay nonnegative and branching processes in nonfavorable random environment

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let {Sn,n0} be a random walk with increments that belong (without centering) to the domain of attraction of an alpha-stable law, that is, there exists a process {Yt,t0} such that Snt/an  Ytt0, as n for some scaling constants an. Assuming that S0=o(an) and Snφ(n)=o(an), we prove several conditional limit theorems for the distribution of the random variable Snm given that m=o(n) and min0knSk0. These theorems supplement the assertions established by Caravenna and Chaumont in 2013. Our results are used to study the population size of a critical branching process evolving in an unfavourable environment.

作者简介

Vladimir Vatutin

Steklov Mathematical Institute of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: vatutin@mi-ras.ru
Doctor of physico-mathematical sciences, Professor

Congzao Dong

Xidian University

Email: czdong@xidian.edu.cn

Elena Dyakonova

Steklov Mathematical Institute of Russian Academy of Sciences

Email: elena@mi-ras.ru
Doctor of physico-mathematical sciences, Head Scientist Researcher

参考

  1. V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673
  2. В. И. Афанасьев, “Принцип инвариантности для критического процесса Гальтона–Ватсона, достигающего высокого уровня”, Теория вероятн. и ее примен., 55:4 (2010), 625–643
  3. V. I. Afanasyev, C. Böinghoff, G. Kersting, V. A. Vatutin, “Limit theorems for weakly subcritical branching processes in random environment”, J. Theoret. Probab., 25:3 (2012), 703–732
  4. J. Bertoin, R. A. Doney, “On conditioning a random walk to stay nonnegative”, Ann. Probab., 22:4 (1994), 2152–2167
  5. N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp.
  6. E. Bolthausen, “On a functional central limit theorem for random walks conditioned to stay positive”, Ann. Probab., 4:3 (1976), 480–485
  7. A. Bryn-Jones, R. A. Doney, “A functional limit theorem for random walk conditioned to stay non-negative”, J. London Math. Soc. (2), 74:1 (2006), 244–258
  8. L. Chaumont, “Excursion normalisee, meandre at pont pour les processus de Levy stables”, Bull. Sci. Math., 121:5 (1997), 377–403
  9. F. Caravenna, “A local limit theorem for random walks conditioned to stay positive”, Probab. Theory Related Fields, 133:4 (2005), 508–530
  10. F. Caravenna, L. Chaumont, “Invariance principles for random walks conditioned to stay positive”, Ann. Inst. Henri Poincare Probab. Stat., 44:1 (2008), 170–190
  11. F. Caravenna, L. Chaumont, “An invariance principle for random walk bridges conditioned to stay positive”, Electron. J. Probab., 18 (2013), 60, 32 pp.
  12. L. Chaumont, R. A. Doney, “Invariance principles for local times at the maximum of random walks and Levy processes”, Ann. Probab., 38:4 (2010), 1368–1389
  13. F. den Hollander, Random polymers, Ecole d'Ete de Probabilites de Saint-Flour XXXVII – 2007, Lecture Notes in Math., 1974, Springer-Verlag, Berlin, 2009, xiv+258 pp.
  14. R. A. Doney, “Local behaviour of first passage probabilities”, Probab. Theory Related Fields, 152:3-4 (2012), 559–588
  15. В. Феллер, Введение в теорию вероятностей и ее приложения, т. 2, Мир, М., 1967, 752 с.
  16. Б. В. Гнеденко, А. Н. Колмогоров, Предельные распределения для сумм независимых случайных величин, Гостехиздат, М.–Л., 1949, 264 с.
  17. D. L. Iglehart, “Functional central limit theorems for random walks conditioned to stay positive”, Ann. Probab., 2:2 (1974), 608–619
  18. W. D. Kaigh, “An invariance principle for random walk conditioned by a late return to zero”, Ann. Probab., 4:1 (1976), 115–121
  19. G. Kersting, V. Vatutin, Discrete time branching processes in random environment, Math. Stat. Ser., John Wiley & Sons, London; ISTE, Hoboken, NJ, 2017, xiv+286 pp.
  20. T. M. Liggett, “An invariance principle for conditioned sums of independent random variables”, J. Math. Mech., 18:6 (1968), 559–570
  21. Б. А. Рогозин, “Распределение первого лестничного момента и высоты и флуктуации случайного блуждания”, Теория вероятн. и ее примен., 16:4 (1971), 593—613
  22. Е. Сенета, Правильно меняющиеся функции, Наука, М., 1985, 142 с.
  23. Я. Г. Синай, “О распределении первой положительной суммы для последовательности независимых случайных величин”, Теория вероятн. и ее примен., 2:1 (1957), 126–135
  24. C. Stone, “A local limit theorem for nonlattice multi-dimensional distribution functions”, Ann. Math. Statist., 36:2 (1965), 546–551
  25. V. A. Vatutin, V. Wachtel, “Local probabilities for random walks conditioned to stay positive”, Probab. Theory Related Fields, 143:1-2 (2009), 177–217
  26. V. Vatutin, E. Dyakonova, “Path to survival for the critical branching processes in a random environment”, J. Appl. Probab., 54:2 (2017), 588–602
  27. В. А. Ватутин, Е. Е. Дьяконова, “Критические ветвящиеся процессы, эволюционирующие в неблагоприятной случайной среде”, Дискрет. матем., 34:3 (2022), 20–33
  28. В. А. Ватутин, Е. Е. Дьяконова, “Размер популяции критического ветвящегося процесса, эволюционирующего в неблагоприятной среде”, Теория вероятн. и ее примен., 68:3 (2023), 509–531

补充文件

附件文件
动作
1. JATS XML

版权所有 © Ватутин В.A., Донг К., Дьяконова Е.E., 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».