Задачи восстановления интегрируемых функций и тригонометрических рядов

Обложка
  • Авторы: Плотников М.Г.1,2,3
  • Учреждения:
    1. Московский государственный университет имени М. В. Ломоносова, механико-математический факультет
    2. Московский центр фундаментальной и прикладной математики
    3. Вологодский государственный университет
  • Выпуск: Том 212, № 6 (2021)
  • Страницы: 109-125
  • Раздел: Статьи
  • URL: https://bakhtiniada.ru/0368-8666/article/view/142344
  • DOI: https://doi.org/10.4213/sm9459
  • ID: 142344

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассматриваются классы $\Gamma$ функций из $L_1$ с фиксированной скоростью убывания их коэффициентов Фурье. Показывается, что для каждого $\Gamma$ найдется (восстанавливающее) множество $G$ сколь угодно малой меры такое, что любая функция из $\Gamma$ восстанавливается по своим значениям на $G$. Приводится формула для вычисления коэффициентов Фурье такой функции по ее значениям на $G$. Отмечается, что для любой $L_1$-функции можно найти персональное восстанавливающее множество с описанными свойствами. Параллельно решается задача о восстановлении общих тригонометрических рядов из классов Зигмунда, сходящихся к суммируемым функциям на таких множествах $G$. Библиография: 10 названий.

Об авторах

Михаил Геннадьевич Плотников

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет; Московский центр фундаментальной и прикладной математики; Вологодский государственный университет

Email: mgplotnikov@gmail.com
доктор физико-математических наук, без звания

Список литературы

  1. Б. Д. Боянов, “Оптимальные квадратурные формулы”, УМН, 60:6(366) (2005), 33–52
  2. С. А. Смоляк, Об оптимальном восстановлении функций и функционалов от них, Дисс. … канд. физ.-матем. наук, МГУ, М., 1965
  3. V. F. Babenko, V. V. Babenko, M. V. Polischuk, On optimal recovery of integrals of set-valued functions
  4. V. N. Temlyakov, “The Marcinkiewicz-type discretization theorems”, Constr. Approx., 48:2 (2018), 337–369
  5. И. Добеши, Десять лекций по вейвлетам, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2001, 464 с.
  6. A. S. Kechris, A. Louveau, Descriptive set theory and the structure of sets of uniqueness, London Math. Soc. Lecture Note Ser., 128, Cambridge Univ. Press, Cambridge, 1987, viii+367 pp.
  7. А. Зигмунд, Тригонометрические ряды, т. 1, Мир, М., 1965, 615 с.
  8. J.-P. Kahane, Y. Katznelson, “Sur les ensembles d'unicite $U(varepsilon)$ de Zygmund”, C. R. Acad. Sci. Paris Ser. A-B, 277 (1973), A893–A895
  9. Н. К. Бари, Тригонометрические ряды, Физматгиз, М., 1961, 936 с.
  10. И. П. Натансон, Теория функций вещественной переменной, 3-е изд., испр., Лань, СПб., 1999, 560 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Плотников М.Г., 2021

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».