Multivariate Haar systems in Besov function spaces
- Авторлар: Oswald P.1
-
Мекемелер:
- Institute for Numerical Simulation, Bonn University
- Шығарылым: Том 212, № 6 (2021)
- Беттер: 73-108
- Бөлім: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/142342
- DOI: https://doi.org/10.4213/sm9398
- ID: 142342
Дәйексөз келтіру
Аннотация
We determine all cases for which the $d$-dimensional Haar wavelet system $H^d$ on the unit cube $I^d$ is a conditional or unconditional Schauder basis in the classical isotropic Besov function spaces ${B}_{p,q,1}^s(I^d)$, $0< p,q< \infty$, $0\le s < 1/p$, defined in terms of first-order $L_p$-moduli of smoothness. We obtain similar results for the tensor-product Haar system $\widetilde{H}^d$, and characterize the parameter range for which the dual of ${B}_{p,q,1}^s(I^d)$ is trivial for $0< p< 1$.
Bibliography: 31 titles.
Авторлар туралы
Peter Oswald
Institute for Numerical Simulation, Bonn University
Хат алмасуға жауапты Автор.
Email: poswald@research.bell-labs.com
Doctor of physico-mathematical sciences, Professor
Әдебиет тізімі
- Z. Ciesielski, J. Domsta, “Construction of an orthonormal basis in $C^m(I^d)$ and $W^m_p(I^d)$”, Studia Math., 41:2 (1972), 211–224
- Z. Ciesielski, “Constructive function theory and spline systems”, Studia Math., 53:3 (1975), 277–302
- Z. Ciesielski, “Haar orthogonal functions in analysis and probability”, A. Haar memorial conference (Budapest, 1985), v. I, II, Colloq. Math. Soc. Janos Bolyai, 49, North-Holland, Amsterdam, 1987, 25–56
- Z. Ciesielski, T. Figiel, “Spline approximation and Besov spaces on compact manifolds”, Studia Math., 75:1 (1982), 13–36
- Z. Ciesielski, T. Figiel, “Spline bases in classical function spaces on compact $C^infty$ manifolds. I”, Studia Math., 76:1 (1983), 1–58
- Z. Ciesielski, T. Figiel, “Spline bases in classical function spaces on compact $C^infty$ manifolds. II”, Studia Math., 76:2 (1983), 95–136
- R. A. DeVore, V. A. Popov, “Interpolation of Besov spaces”, Trans. Amer. Math. Soc., 305:1 (1988), 397–414
- G. Garrigos, A. Seeger, T. Ullrich, “The Haar system as a Schauder basis in spaces of Hardy–Sobolev type”, J. Fourier Anal. Appl., 24:5 (2018), 1319–1339
- G. Garrigos, A. Seeger, T. Ullrich, “Basis properties of the Haar system in limiting Besov spaces”, Geometric aspects of harmonic analysis, In honor of the 70th birthday of F. Ricci, Springer INDAM series, 45, Springer, 2021 (to appear)
- G. Garrigos, A. Seeger, T. Ullrich, “The Haar system in Triebel–Lizorkin spaces: endpoint results”, Dedicated to G. Weiss on his 92nd birthday, J. Geom. Anal., Publ. online: 2021, 1–45
- Б. И. Голубов, “Наилучшие приближения функций в метрике $L_p$ полиномами Хаара и Уолша”, Матем. сб., 87(129):2 (1972), 254–274
- Б. С. Кашин, А. А. Саакян, Ортогональные ряды, 2-е изд., АФЦ, М., 1999, x+550 с.
- В. Г. Кротов, “О безусловной сходимости рядов Фурье по системе Хаара в пространствах $Lambda_omega^p$”, Матем. заметки, 23:5 (1978), 685–695
- В. Г. Кротов, “О безусловной базисности системы Хаара в пространствах $Lambda_omega^1$”, Матем. заметки, 32:5 (1982), 675–684
- П. Освальд, “Приближение сплайнами в метрике $L^p$, $0
- P. Oswald, “On inequalities for spline approximation and spline systems in the space $L^p$ ($0
- P. Oswald, Multilevel finite element approximation. Theory and applications, Teubner Skr. Numer., B. G. Teubner, Stuttgart, 1994, 160 pp.
- P. Oswald, Haar system as Schauder basis in Besov spaces: the limiting cases for $0
- В. С. Романюк, “Кратный базис Хаара и $m$-членные приближения функций из классов Бесова. I”, Укр. матем. журн., 68:4 (2016), 551–562
- В. С. Романюк, “Кратный базис Хаара и $m$-членные приближения функций из классов Бесова. II”, Укр. матем. журн., 68:6 (2016), 816–825
- S. Ropela, “Spline bases in Besov spaces”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 24:5 (1976), 319–325
- A. Seeger, T. Ullrich, “Haar projection numbers and failure of unconditional convergence in Sobolev spaces”, Math. Z., 285:1-2 (2017), 91–119
- A. Seeger, T. Ullrich, “Lower bounds for Haar projections: deterministic examples”, Constr. Approx., 46:2 (2017), 227–242
- Э. А. Стороженко, В. Г. Кротов, П. Освальд, “Прямые и обратные теоремы типа Джексона в пространствах $L^p$, $0
- H. Triebel, “Über die Existenz von Schauderbasen in Sobolev–Besov–Räumen. Isomorphiebeziehungen”, Studia Math., 46:1 (1973), 83–100
- H. Triebel, “On Haar bases in Besov spaces”, Serdica, 4:4 (1978), 330–343
- H. Triebel, Theory of function spaces. III, Monogr. Math., 100, Birkhäuser Verlag, Basel, 2006, xii+426 pp.
- H. Triebel, Function spaces and wavelets on domains, EMS Tracts Math., 7, Eur. Math. Soc., Zürich, 2008, x+256 pp.
- H. Triebel, Bases in function spaces, sampling, discrepancy, numerical integration, EMS Tracts Math., 11, Eur. Math. Soc., Zürich, 2010, x+296 pp.
- П. Л. Ульянов, “О рядах по системе Хаара”, Матем. сб., 63(105):3 (1964), 356–391
- Wen Yuan, W. Sickel, Dachun Yang, “The Haar system in Besov-type spaces”, Studia Math., 253:2 (2020), 129–162
Қосымша файлдар
