On the multiplicative Chung–Diaconis–Graham process
- Authors: Shkredov I.D.1
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 214, No 6 (2023)
- Pages: 136-154
- Section: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/133539
- DOI: https://doi.org/10.4213/sm9811
- ID: 133539
Cite item
Abstract
We study the lazy Markov chain on
About the authors
Ilya Dmitrievich Shkredov
Steklov Mathematical Institute of Russian Academy of Sciences
Author for correspondence.
Email: ilya.shkredov@gmail.com
Doctor of physico-mathematical sciences, Professor
References
- C. Asci, “Generating uniform random vectors”, J. Theoret. Probab., 14:2 (2001), 333–356
- J. Bourgain, “Multilinear exponential sums in prime fields under optimal entropy condition on the sources”, Geom. Funct. Anal., 18:5 (2009), 1477–1502
- J. Bourgain, A. Gamburd, “Uniform expansion bounds for Cayley graphs of $mathrm{SL}_2(mathbb {F}_p)$”, Ann. of Math. (2), 167:2 (2008), 625–642
- S. Chatterjee, P. Diaconis, “Speeding up Markov chains with deterministic jumps”, Probab. Theory Related Fields, 178:3-4 (2020), 1193–1214
- Fan Chung, “Laplacians and the Cheeger inequality for directed graphs”, Ann. Comb., 9:1 (2005), 1–19
- F. R. K. Chung, P. Diaconis, R. L. Graham, “Random walks arising in random number generation”, Ann. Probab., 15:3 (1987), 1148–1165
- S. Eberhard, P. P. Varju, “Mixing time of the Chung–Diaconis–Graham random process”, Probab. Theory Related Fields, 179:1-2 (2021), 317–344
- J. He, “Markov chains on finite fields with deterministic jumps”, Electron. J. Probab., 27 (2022), 28, 17 pp.
- J. He, Huy Tuan Pham, Max Wenqiang Xu, “Mixing time of fractional random walk on finite fields”, Electron. J. Probab., 27 (2022), 133, 15 pp.
- M. Hildebrand, “A lower bound for the Chung–Diaconis–Graham random process”, Proc. Amer. Math. Soc., 137:4 (2009), 1479–1487
- M. Hildebrand, “Random processes of the form $X_{n+1}=a_n X_n+b_n pmod p$ where $b_n$ takes on a single value”, Random discrete structures (Minneapolis, MN, 1993), IMA Vol. Math. Appl., 76, Springer, New York, 1996, 153–174
- M. Hildebrand, “Random processes of the form $X_{n+1}=a_n X_n+b_n pmod p$”, Ann. Probab., 21:2 (1993), 710–720
- C. Pohoata, Sidon sets and sum–product phenomena
- J. Komlos, M. Sulyok, E. Szemeredi, “Linear problems in combinatorial number theory”, Acta Math. Acad. Sci. Hungar., 26:1-2 (1975), 113–121
- И. А. Круглов, “Случайные последовательности вида $X_{t+1}=a_t X_t+b_t pmod n$ с зависимыми коэффициентами $a_t$, $b_t$”, Дискрет. матем., 17:2 (2005), 49–55
- D. A. Levin, Y. Peres, Markov chains and mixing times, 2nd ed., Amer. Math. Soc., Providence, RI, 2017, xvi+447 pp.
- B. Murphy, “Upper and lower bounds for rich lines in grids”, Amer. J. Math., 143:2 (2021), 577–611
- B. Murphy, G. Petridis, O. Roche-Newton, M. Rudnev, I. D. Shkredov, “New results on sum–product type growth over fields”, Mathematika, 65:3 (2019), 588–642
- K. O'Bryant, “A complete annotated bibliography of work related to Sidon sequences”, Electron. J. Combin., 2004, Dynamic Surveys, DS11, 39 pp.
- O. Roche-Newton, A. Warren, “Additive and multiplicative Sidon sets”, Acta Math. Hungar., 165:2 (2021), 326–336
- M. Rudnev, “On the number of incidences between points and planes in three dimensions”, Combinatorica, 38:1 (2018), 219–254
- M. Rudnev, I. D. Shkredov, “On the growth rate in $mathrm{SL}_2(mathbb {F}_p)$, the affine group and sum–product type implications”, Mathematika, 68:3 (2022), 738–783
- T. Schoen, I. D. Shkredov, “Higher moments of convolutions”, J. Number Theory, 133:5 (2013), 1693–1737
- А. С. Семченков, “Максимальные подмножества без арифметических прогрессий в произвольных множествах”, Матем. заметки, 102:3 (2017), 436–444
- I. D. Shkredov, “Some remarks on the asymmetric sum–product phenomenon”, Mosc. J. Comb. Number Theory, 8:1 (2019), 15–41
- И. Д. Шкредов, “Об асимптотических формулах в некоторых вопросах теории сумм произведений”, Тр. ММО, 79, № 2, МЦНМО, М., 2018, 271–334
- I. D. Shkredov, “Modular hyperbolas and bilinear forms of Kloosterman sums”, J. Number Theory, 220 (2021), 182–211
- I. D. Shkredov, “On an application of higher energies to Sidon sets”, Combinatorica, 2023, Publ. online
- S. Sidon, “Ein Satz über trigonometrische Polynome und seine Anwendung in der Theorie der Fourier-Reihen”, Math. Ann., 106:1 (1932), 536–539
- S. Stevens, F. de Zeeuw, “An improved point-line incidence bound over arbitrary fields”, Bull. Lond. Math. Soc., 49:5 (2017), 842–858
- E. Szemeredi, W. T. Trotter, Jr., “Extremal problems in discrete geometry”, Combinatorica, 3:3-4 (1983), 381–392
- T. Tao, Van H. Vu, Additive combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006, xviii+512 pp.
- L. A. Vinh, “The Szemeredi–Trotter type theorem and the sum–product estimate in finite fields”, European J. Combin., 32:8 (2011), 1177–1181
- A. Warren, Additive and multiplicative Sidon sets, Report at CANT–2021
Supplementary files
