Values of the $\mathfrak{sl}_2$ weight system on the chord diagrams whose intersection graphs are complete graphs.
- 作者: Zakorko P.E.1
-
隶属关系:
- Department of Mathematics, National Research University "Higher School of Economics"
- 期: 卷 214, 编号 7 (2023)
- 页面: 42-59
- 栏目: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/133534
- DOI: https://doi.org/10.4213/sm9873
- ID: 133534
如何引用文章
详细
作者简介
Polina Zakorko
Department of Mathematics, National Research University "Higher School of Economics"without scientific degree, no status
参考
- V. A. Vassiliev, “Cohomology of knot spaces”, Theory of singularities and its applications, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990, 23–69
- M. Kontsevich, “Vassiliev's knot invariants”, I. M. Gel'fand seminar, Part 2, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 137–150
- D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34:2 (1995), 423–472
- S. V. Chmutov, S. K. Lando, “Mutant knots and intersection graphs”, Algebr. Geom. Topol., 7:3 (2007), 1579–1598
- E. Krasilnikov, “An extension of the $mathfrak{sl}_2$ weight system to graphs with $nle 8$ vertices”, Arnold Math. J., 7:4 (2021), 609–618
- П. А. Филиппова, “Значения $mathfrak{sl}_2$-весовой системы на семействе графов, не являющихся графами пересечений хордовых диаграмм”, Матем. сб., 213:2 (2022), 115–148
- S. V. Chmutov, A. N. Varchenko, “Remarks on the Vassiliev knot invariants coming from $mathfrak{sl}_2$”, Topology, 36:1 (1997), 153–178
- A. Bigeni, “A generalization of the Kreweras triangle through the universal $mathfrak{sl}_2$ weight system”, J. Combin. Theory Ser. A, 161 (2019), 309–326
- S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev knot invariants, Cambridge Univ. Press, Cambridge, 2012, xvi+504 pp.
- P. Flajolet, “Combinatorial aspects of continued fractions”, Discrete Math., 32:2 (1980), 125–161
补充文件
