Jordan property for groups of bimeromorphic automorphisms of compact Kähler threefolds
- Authors: Golota A.S.1,2
-
Affiliations:
- Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)
- Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 214, No 1 (2023)
- Pages: 31-42
- Section: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/133498
- DOI: https://doi.org/10.4213/sm9743
- ID: 133498
Cite item
Abstract
About the authors
Alexey Sergeevich Golota
Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE); Steklov Mathematical Institute of Russian Academy of Scienceswithout scientific degree
References
- J. Deserti, The Cremona group and its subgroups, Math. Surveys Monogr., 252, Amer. Math. Soc., Providence, RI, 2021, xii+187 pp.
- C. Jordan, “Memoire sur les equations differentielles lineaires à integrale algebrique”, J. Reine Angew. Math., 1878:84 (1878), 89–215
- V. L. Popov, “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry: the Russell festschrift (McGill Univ., Montreal, QC, 2009), CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 289–311
- Sheng Meng, De-Qi Zhang, “Jordan property for non-linear algebraic groups and projective varieties”, Amer. J. Math., 140:4 (2018), 1133–1145
- Jin Hong Kim, “Jordan property and automorphism groups of normal compact Kahler varieties”, Commun. Contemp. Math., 20:3 (2018), 1750024, 9 pp.
- Sheng Meng, F. Perroni, De-Qi Zhang, “Jordan property for automorphism groups of compact spaces in Fujiki's class $mathscr{C}$”, J. Topol., 15:2 (2022), 806–814
- V. L. Popov, “The Jordan property for Lie groups and automorphism groups of complex spaces”, Math. Notes, 103:5 (2018), 811–819
- J.-P. Serre, “Bounds for the orders of the finite subgroups of $G(k)$”, Group representation theory, EPFL Press, Lausanne, 2007, 405–450
- Yu. G. Zarhin, “Theta groups and products of abelian and rational varieties”, Proc. Edinb. Math. Soc. (2), 57:1 (2014), 299–304
- Yu. Prokhorov, C. Shramov, “Jordan property for groups of birational selfmaps”, Compos. Math., 150:12 (2014), 2054–2072
- Yu. Prokhorov, C. Shramov, “Jordan property for Cremona groups”, Amer. J. Math., 138:2 (2016), 403–418
- Yu. Prokhorov, C. Shramov, “Automorphism groups of compact complex surfaces”, Int. Math. Res. Not. IMRN, 2021:14 (2021), 10490–10520
- Yu. Prokhorov, C. Shramov, “Finite groups of birational selfmaps of threefolds”, Math. Res. Lett., 25:3 (2018), 957–972
- Ю. Г. Прохоров, К. А. Шрамов, “Конечные группы бимероморфных автоморфизмов унилинейчатых трехмерных кэлеровых многообразий”, Изв. РАН. Сер. матем., 84:5 (2020), 169–196
- Ю. Г. Прохоров, К. А. Шрамов, “Конечные группы бимероморфных автоморфизмов неунилинейчатых трехмерных кэлеровых многообразий”, Матем. сб., 213:12 (2022), 86–108
- A. Fujiki, “A theorem on bimeromorphic maps of Kähler manifolds and its applications”, Publ. Res. Inst. Math. Sci., 17:2 (1981), 735–754
- A. Höring, T. Peternell, “Minimal models for Kähler threefolds”, Invent. Math., 203:1 (2016), 217–264
- Ч. Кэртис, И. Райнер, Теория представлений конечных групп и ассоциативных алгебр, Наука, М., 1969, 668 с.
- R. Elkik, “Rationalite des singularites canoniques”, Invent. Math., 64:1 (1981), 1–6
- J. Kollar, Sh. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens, A. Corti, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp.
- S. Boucksom, “Divisorial Zariski decompositions on compact complex manifolds”, Ann. Sci. Ecole Norm. Sup. (4), 37:1 (2004), 45–76
- S. Boucksom, J.-P. Demailly, M. Păun, T. Peternell, “The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension”, J. Algebraic Geom., 22:2 (2013), 201–248
- M. Brunella, “A positivity property for foliations on compact Kähler manifolds”, Internat. J. Math., 17:1 (2006), 35–43
- H. Grauert, R. Remmert, Coherent analytic sheaves, Grundlehren Math. Wiss., 265, Springer-Verlag, Berlin, 1984, xviii+249 pp.
- M. Hanamura, “On the birational automorphism groups of algebraic varieties”, Compos. Math., 63:1 (1987), 123–142
- J. Kollar, “Flops”, Nagoya Math. J., 113 (1989), 15–36
- J. R. King, “The currents defined by analytic varieties”, Acta Math., 127:3-4 (1971), 185–220
- Jia Jia, Sheng Meng, Moishezon manifolds with no nef and big classes
- Junyan Cao, A. Höring, “Rational curves on compact Kähler manifolds”, J. Differential Geom., 114:1 (2020), 1–39
Supplementary files
