Hardy-Littlewood-Sobolev inequality for $p=1$
- Autores: Stolyarov D.M.1,2
-
Afiliações:
- Saint Petersburg State University
- St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
- Edição: Volume 213, Nº 6 (2022)
- Páginas: 125-174
- Seção: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/133458
- DOI: https://doi.org/10.4213/sm9645
- ID: 133458
Citar
Resumo
Sobre autores
Dmitriy Stolyarov
Saint Petersburg State University; St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Email: d.m.stolyarov@spbu.ru
Candidate of physico-mathematical sciences, Associate professor
Bibliografia
- D. R. Adams, L. I. Hedberg, Function spaces and potential theory, Grundlehren Math. Wiss., 314, Springer-Verlag, Berlin, 1996, xii+366 pp.
- A. Alvino, “Sulla diseguaglianza di Sobolev in spazi di Lorentz”, Boll. Un. Mat. Ital. A (5), 14:1 (1977), 148–156
- A. Arroyo-Rabasa, G. De Philippis, J. Hirsch, F. Rindler, “Dimensional estimates and rectifiability for measures satisfying linear PDE constraints”, Geom. Funct. Anal., 29:3 (2019), 639–658
- R. Ayoush, D. M. Stolyarov, M. Wojciechowski, “Sobolev martingales”, Rev. Mat. Iberoam., 37:4 (2021), 1225–1246
- R. Ayoush, M. Wojciechowski, On dimension and regularity of bundle measures
- J. Bennett, A. Carbery, T. Tao, “On the multilinear restriction and Kakeya conjectures”, Acta Math., 196:2 (2006), 261–302
- О. В. Бесов, В. П. Ильин, “Теорема вложения для предельного показателя”, Матем. заметки, 6:2 (1969), 129–138
- О. В. Бесов, В. П. Ильин, С. М. Никольский, Интегральные представления функций и теоремы вложения, 2-е изд., перераб. и доп., Наука, М., 1996, 480 с.
- J. Bourgain, A Hardy inequality in Sobolev spaces, Vrije Univ., Brussels, 1981
- J. Bourgain, H. Brezis, “On the equation $operatorname{div} Y = f$ and application to control of phases”, J. Amer. Math. Soc., 16:2 (2003), 393–426
- J. Bourgain, H. Brezis, “New estimates for the Laplacian, the div–curl, and related Hodge systems”, C. R. Math. Acad. Sci. Paris, 338:7 (2004), 539–543
- J. Bourgain, H. Brezis, “New estimates for elliptic equations and Hodge type systems”, J. Eur. Math. Soc. (JEMS), 9:2 (2007), 277–315
- J. Bourgain, H. Brezis, P. Mironescu, “$H^{1/2}$ maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation”, Publ. Math. Inst. Hautes Etudes Sci., 99 (2004), 1–115
- P. Bousquet, J. Van Schaftingen, “Hardy–Sobolev inequalities for vector fields and canceling linear differential operators”, Indiana Univ. Math. J., 63:5 (2014), 1419–1445
- S. Chanillo, J. Van Schaftingen, Po-Lam Yung, “Bourgain–Brezis inequalities on symmetric spaces of non-compact type”, J. Funct. Anal., 273:4 (2017), 1504–1547
- E. Gagliardo, “Ulteriori proprieta di alcune classi di funzioni in piu variabili”, Ricerche Mat., 8 (1959), 24–51
- F. Gmeineder, B. Raita, J. Van Schaftingen, “On limiting trace inequalities for vectorial differential operators”, Indiana Univ. Math. J., 70:5 (2021), 2133–2176
- L. Grafakos, Modern Fourier analysis, Grad. Texts in Math., 250, 2nd ed., Springer, New York, 2009, xvi+504 pp.
- G. H. Hardy, J. E. Littlewood, “Some new properties of Fourier constants”, Math. Ann., 97:1 (1927), 159–209
- F. Hernandez, D. Spector, Fractional integration and optimal estimates for elliptic systems
- S. Janson, “Characterizations of $H^1$ by singular integral transforms on martingales and $R^n$”, Math. Scand., 41:1 (1977), 140–152
- С. В. Кисляков, “Соболевские операторы вложения и неизоморфность некоторых банаховых пространств”, Функц. анализ и его прил., 9:4 (1975), 22–27
- С. В. Кисляков, Д. В. Максимов, “Одна теорема вложения с анизотропией для векторных полей”, Исследования по линейным операторам и теории функций. 45, Зап. науч. сем. ПОMИ, 456, ПОМИ, СПб., 2017, 114–124
- S. V. Kislyakov, D. V. Maximov, D. M. Stolyarov, “Differential expressions with mixed homogeneity and spaces of smooth functions they generate in arbitrary dimension”, J. Funct. Anal., 269:10 (2015), 3220–3263
- В. И. Коляда, “О вложении пространств Соболева”, Матем. заметки, 54:3 (1993), 48–71
- V. I. Kolyada, “Embedding theorems for Sobolev and Hardy–Sobolev spaces and estimates of Fourier transforms”, Ann. Mat. Pura Appl. (4), 198:2 (2019), 615–637
- L. Lanzani, E. M. Stein, “A note on div curl inequalities”, Math. Res. Lett., 12:1 (2005), 57–61
- J. Lindenstrauss, A. Pelczynski, “Absolutely summing operators in $mathscr L_p$-spaces and their applications”, Studia Math., 29:3 (1968), 275–326
- V. Maz'ya, “Bourgain–Brezis type inequality with explicit constants”, Interpolation theory and applications, Contemp. Math., 445, Amer. Math. Soc., Providence, RI, 2007, 247–252
- V. Maz'ya, “Estimates for differential operators of vector analysis involving $L^1$-norm”, J. Eur. Math. Soc. (JEMS), 12:1 (2010), 221–240
- В. Г. Мазья, Пространства С. Л. Соболева, Изд-во Ленингр. ун-та, Л., 1985, 416 с.
- L. Nirenberg, “On ellipltic partial differential equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 13:2 (1959), 115–162
- J. Peetre, New thoughts on Besov spaces, Duke Univ. Math. Ser., 1, Math. Department, Duke Univ., Durham, NC, 1976, vi+305 pp.
- A. Pelczynski, M. Wojciechowski, “Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm”, Studia Math., 107:1 (1993), 61–100
- S. Poornima, “An embedding theorem for the Sobolev space $W^{1,1}$”, Bull. Sci. Math. (2), 107:3 (1983), 253–259
- D. Preiss, “Geometry of measures in $mathbf R^n$: distribution, rectifiability, and densities”, Ann. of Math. (2), 125:3 (1987), 537–643
- B. Raiţă, $L^1$-estimates for constant rank operators
- M. Roginskaya, M. Wojciechowski, “Singularity of vector valued measures in terms of Fourier transform”, J. Fourier Anal. Appl., 12:2 (2006), 213–223
- J. Van Schaftingen, “Estimates for $L^1$-vector fields”, C. R. Math. Acad. Sci. Paris, 339:3 (2004), 181–186
- J. Van Schaftingen, “A simple proof of an inequality of Bourgain, Brezis and Mironescu”, C. R. Math. Acad. Sci. Paris, 338:1 (2004), 23–26
- J. Van Schaftingen, “Limiting fractional and Lorentz space estimates of differential forms”, Proc. Amer. Math. Soc., 138:1 (2010), 235–240
- J. Van Schaftingen, “Limiting Sobolev inequalities for vector fields and canceling linear differential operators”, J. Eur. Math. Soc. (JEMS), 15:3 (2013), 877–921
- J. Van Schaftingen, “Limiting Bourgain–Brezis estimates for systems of linear differential equations: theme and variations”, J. Fixed Point Theory Appl., 15:2 (2014), 273–297
- С. К. Смирнов, “Разложение соленоидальных векторных зарядов на элементарные соленоиды и структура нормальных одномерных потоков”, Алгебра и анализ, 5:4 (1993), 206–238
- С. Соболев, “Об одной теореме функционального анализа”, Матем. сб., 4(46):3 (1938), 471–497
- В. А. Солонников, “О некоторых неравенствах для функций из классов $vec W_{p}(R^n)$”, Краевые задачи математической физики и смежные вопросы теории функций. 6, Зап. науч. сем. ЛОМИ, 27, Изд-во «Наука», Ленинград. отд., Л., 1972, 194–210
- D. Spector, “New directions in harmonic analysis on $L^1$”, Nonlinear Anal., 192 (2020), 111685, 20 pp.
- D. Spector, “An optimal Sobolev embedding for $L^1$”, J. Funct. Anal., 279:3 (2020), 108559, 26 pp.
- D. Spector, J. Van Schaftingen, “Optimal embeddings into Lorentz spaces for some vector differential operators via Gagliardo's lemma”, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 30:3 (2019), 413–436
- И. Стейн, Сингулярные интегралы и дифференциальные свойства функций, Мир, М., 1973, 342 с.
- D. Stolyarov, Dimension estimates for vectorial measures with restricted spectrum
- D. Stolyarov, Hardy–Littlewood–Sobolev inequality for $p=1$
- Д. М. Столяров, “Слабо сокращающие операторы и сингулярные интегралы”, Труды МИАН, 312, Функциональные пространства, теория приближений и смежные вопросы анализа. Сборник статей. К 115-летию со дня рождения академика Сергея Михайловича Никольского (2021), 259–271
- D. M. Stolyarov, M. Wojciechowski, “Dimension of gradient measures”, C. R. Math. Acad. Sci. Paris, 352:10 (2014), 791–795
- M. J. Strauss, “Variations of Korn's and Sobolev's equalities”, Partial differential equations (Univ. California, Berkeley, CA, 1971), Proc. Sympos. Pure Math., 23, Amer. Math. Soc., Providence, RI, 1973, 207–214
- T. Tao, Uchiyama's constructive proof of the Fefferman–Stein decomposition, 2007
- T. Tao, Symmetric functions in a fractional number of variables, and the multilinear Kakeya conjecture, 2019
- L. Tartar, “Imbedding theorems of Sobolev spaces into Lorentz spaces”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 1:3 (1998), 479–500
- A. Uchiyama, “A constructive proof of the Fefferman–Stein decomposition of $operatorname{BMO}(mathbf R^n)$”, Acta Math., 148 (1982), 215–241
Arquivos suplementares
