Self-affine $2$-attractors and tiles
- Авторлар: Zaitseva T.I.1,2, Protasov V.Y.3,2
-
Мекемелер:
- Moscow Center for Fundamental and Applied Mathematics
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- University of L’Aquila
- Шығарылым: Том 213, № 6 (2022)
- Беттер: 71-110
- Бөлім: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/133451
- DOI: https://doi.org/10.4213/sm9682
- ID: 133451
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
Tatyana Zaitseva
Moscow Center for Fundamental and Applied Mathematics; Lomonosov Moscow State University, Faculty of Mechanics and Mathematicswithout scientific degree, no status
Vladimir Protasov
University of L’Aquila; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Email: v-protassov@yandex.ru
Doctor of physico-mathematical sciences, no status
Әдебиет тізімі
- S. Akiyama, H. Brunotte, A. Pethő, J. M. Thuswaldner, “Generalized radix representations and dynamical systems. III”, Osaka J. Math., 45:2 (2008), 347–374
- S. Akiyama, N. Gjini, “On the connectedness of self-affine attractors”, Arch. Math. (Basel), 82:2 (2004), 153–163
- S. Akiyama, B. Loridant, “Boundary parametrization of planar self-affine tiles with collinear digit set”, Sci. China Math., 53:9 (2010), 2173–2194
- S. Akiyama, B. Loridant, J. M. Thuswaldner, “Topology of planar self-affine tiles with collinear digit set”, J. Fractal Geom., 8:1 (2021), 53–93
- S. Akiyama, A. Pethő, “On the distribution of polynomials with bounded roots. II. Polynomials with integer coefficients”, Unif. Distrib. Theory, 9:1 (2014), 5–19
- S. Akiyama, J. M. Thuswaldner, “A survey on topological properties of tiles related to number systems”, Geom. Dedicata, 109:1 (2004), 89–105
- C. Bandt, Combinatorial topology of three-dimensional self-affine tiles
- C. Bandt, “Self-similar sets. V. Integer matrices and fractal tilings of $mathbb R^n$”, Proc. Amer. Math. Soc., 112:2 (1991), 549–562
- C. Bandt, G. Gelbrich, “Classification of self-affine lattice tilings”, J. London Math. Soc. (2), 50:3 (1994), 581–593
- J. J. Benedetto, M. T. Leon, “The construction of multiple dyadic minimally supported frequency wavelets on $mathbb R^d$”, The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999), Contemp. Math., 247, Amer. Math. Soc., Providence, RI, 1999, 43–74
- J. J. Benedetto, S. Sumetkijakan, “Tight frames and geometric properties of wavelet sets”, Adv. Comput. Math., 24:1-4 (2006), 35–56
- C. Bandt, Y. Wang, “Disk-like self-affine tiles in $mathbb R^2$”, Discrete Comput. Geom., 26:4 (2001), 591–601
- M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc., 164, no. 781, Amer. Math. Soc., Providence, RI, 2003, vi+122 pp.
- A. S. Cavaretta, W. Dahmen, C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93, no. 453, Amer. Math. Soc., Providence, RI, 1991, vi+186 pp.
- M. Cotronei, D. Ghisi, M. Rossini, T. Sauer, “An anisotropic directional subdivision and multiresolution scheme”, Adv. Comput. Math., 41 (2015), 709–726
- C. A. Cabrelli, C. Heil, U. M. Molter, Self-similarity and multiwavelets in higher dimensions, Mem. Amer. Math. Soc., 170, no. 807, Amer. Math. Soc., Providence, RI, 2004, viii+82 pp.
- M. Charina, T. Mejstrik, “Multiple multivariate subdivision schemes: matrix and operator approaches”, J. Comput. Appl. Math., 349 (2019), 279–291
- M. Charina, V. Yu. Protasov, “Regularity of anisotropic refinable functions”, Appl. Comput. Harmon. Anal., 47:3 (2019), 795–821
- A. Cohen, K. Gröchenig, L. F. Villemoes, “Regularity of multivariate refinable functions”, Constr. Approx., 15:2 (1999), 241–255
- G. R. Conner, J. M. Thuswaldner, “Self-affine manifolds”, Adv. Math., 289 (2016), 725–783
- N. Desprez, Chaoscope, Software
- A. Dubickas, S. V. Konyagin, “On the number of polynomials of bounded measure”, Acta Arith., 86:4 (1998), 325–342
- Qi-Rong Deng, Ka-sing Lau, “Connectedness of a class of planar self-affine tiles”, J. Math. Anal. Appl., 380:2 (2011), 493–500
- Xingde Dai, D. R. Larson, D. M. Speegle, “Wavelet sets in $mathbb R^n$”, J. Fourier Anal. Appl., 3:4 (1997), 451–456
- A. Dubickas, “Counting integer reducible polynomials with bounded measure”, Appl. Anal. Discrete Math., 10:2 (2016), 308–324
- Xiaoye Fu, J.-P. Gabardo, Self-affine scaling sets in $mathbb R^2$, Mem. Amer. Math. Soc., 233, no. 1097, Amer. Math. Soc., Providence, RI, 2015, vi+85 pp.
- W. J. Gilbert, “Radix representations of quadratic fields”, J. Math. Anal. Appl., 83:1 (1981), 264–274
- A. M. Garsia, “Arithmetic properties of Bernoulli convolutions”, Trans. Amer. Math. Soc., 102:3 (1962), 409–432
- G. Gelbrich, “Self-affine lattice reptiles with two pieces in $mathbb R^n$”, Math. Nachr., 178:1 (1996), 129–134
- R. F. Gundy, A. L. Jonsson, “Scaling functions on $mathbb R^2$ for dilations of determinant $pm 2$”, Appl. Comput. Harmon. Anal., 29:1 (2010), 49–62
- C. Gröchenig, W. R. Madych, “Multiresolution analysis, Haar bases, and self-similar tilings of $mathbf R^n$”, IEEE Trans. Inform. Theory, 38:2, Part 2 (1992), 556–568
- K. Gröchenig, A. Haas, “Self-similar lattice tilings”, J. Fourier Anal. Appl., 1:2 (1994), 131–170
- Xing-Gang He, Ka-Sing Lau, “Characterization of tile digit sets with prime determinants”, Appl. Comput. Harmon. Anal., 16:3 (2004), 159–173
- D. Hacon, N. C. Saldanha, J. J. P. Veerman, “Remarks on self-affine tilings”, Exp. Math., 3:4 (1994), 317–327
- I. Kirat, Ka-Sing Lau, “On the connectedness of self-affine tiles”, J. London Math. Soc. (2), 62:1 (2000), 291–304
- I. Kirat, Ka-Sing Lau, “Classification of integral expanding matrices and self-affine tiles”, Discrete Comput. Geom., 28:1 (2002), 49–73
- I. Kirat, Ka-Sing Lau, Hui Rao, “Expanding polynomials and connectedness of self-affine tiles”, Discrete Comput. Geom., 31:2 (2004), 275–286
- A. Kravchenko, D. Mekhontsev, IFS Builder 3d, Software
- A. Krivoshein, V. Protasov, M. Skopina, Multivariate wavelets frames, Ind. Appl. Math., Springer, Singapore, 2016, xiii+248 pp.
- P. Kirschenhofer, J. M. Thuswaldner, “Shift radix systems–a survey”, Numeration and substitution 2012, RIMS Kôkyûroku Bessatsu, B46, Res. Inst. Math. Sci. (RIMS), Kyoto, 2014, 1–59
- P. Kirschenhofer, A. Thuswaldner, “Distribution results on polynomials with bounded roots”, Monatsh. Math., 185:4 (2018), 689–715
- J. C. Lagarias, Yang Wang, “Haar type orthonormal wavelet bases in $mathbf R^2$”, J. Fourier Anal. Appl., 2:1 (1995), 1–14
- J. C. Lagarias, Yang Wang, “Haar bases for $L^2(mathbb R^n)$ and algebraic number theory”, J. Number Theory, 57:1 (1996), 181–197
- J. C. Lagarias, Yang Wang, “Integral self-affine tiles in $mathbb R^n$. II. Lattice tilings”, J. Fourier Anal. Appl., 3:1 (1997), 83–102
- J. Lagarias, Yang Wang, “Corrigendum/addendum: “Haar bases for $L_2(mathbb R^n)$ and algebraic number theory””, J. Number Theory, 76:2 (1999), 330–336
- T. Mejstrik, “Algorithm 1011: improved invariant polytope algorithm and applications”, ACM Trans. Math. Software, 46:3 (2020), 29, 26 pp.
- D. Mekhontsev, IFStile, Software
- K. D. Merrill, “Simple wavelet sets in $mathbb R^n$”, J. Geom. Anal., 25:2 (2015), 1295–1305
- K. D. Merrill, Generalized multiresolution analyses, Lect. Notes Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2018, x+113 pp.
- F. Morgan, Geometric measure theory. A beginner's guide, Academic Press, Inc., Boston, MA, 1988, viii+145 pp.
- И. Я. Новиков, В. Ю. Протасов, М. А. Скопина, Теория всплесков, Физматлит, М., 2005, 613 с.
- Sze-Man Ngai, V. F. Sirvent, J. J. P. Veerman, Yang Wang, “On 2-reptiles in the plane”, Geom. Dedicata, 82:1-3 (2000), 325–344
- В. Ю. Протасов, “Обобщенный совместный спектральный радиус. Геометрический подход”, Изв. РАН. Сер. матем., 61:5 (1997), 99–136
- V. Yu. Protasov, “Surface dimension, tiles, and synchronizing automata”, SIAM J. Math. Anal., 52:4 (2020), 3463–3486
- H. Rademacher, “Über partielle und totale Differenzierbarkeit von Funktionen mehrerer Variablen und über die Transformation der Doppelintegrale”, Math. Ann., 79:4 (1919), 340–359
- W. Steiner, J. M. Thuswaldner, “Rational self-affine tiles”, Trans. Amer. Math. Soc., 367:11 (2015), 7863–7894
- J. M. Thuswaldner, Shu-qin Zhang, “On self-affine tiles whose boundary is a sphere”, Trans. Amer. Math. Soc., 373:1 (2020), 491–527
- M. Uray, On the expansivity gap of integer polynomials
- H. Weyl, “Über die Gleichverteilung von Zahlen mod. Eins”, Math. Ann., 77:3 (1916), 313–352
- P. Wojtaszczyk, A mathematical introduction to wavelets, London Math. Soc. Stud. Texts, 37, Cambridge Univ. Press, Cambridge, 1997, xii+261 pp.
- T. Zaitseva, “Haar wavelets and subdivision algorithms on the plane”, Adv. Syst. Sci. Appl., 17:3 (2017), 49–57
- Т. И. Зайцева, “Простые тайлы и аттракторы”, Матем. сб., 211:9 (2020), 24–59
- V. G. Zakharov, “Rotation properties of 2D isotropic dilation matrices”, Int. J. Wavelets Multiresolut. Inf. Process., 16:1 (2018), 1850001, 14 pp.
Қосымша файлдар
