Critical Galton-Watson branching processes with a countable set of types and infinite second moments
- 作者: Vatutin V.A.1, Dyakonova E.E.1, Topchii V.A.2,3
-
隶属关系:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Mathematical Center in Akademgorodok
- Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
- 期: 卷 212, 编号 1 (2021)
- 页面: 3-27
- 栏目: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/133366
- DOI: https://doi.org/10.4213/sm9402
- ID: 133366
如何引用文章
详细
作者简介
Vladimir Vatutin
Steklov Mathematical Institute of Russian Academy of Sciences
Email: vatutin@mi-ras.ru
Doctor of physico-mathematical sciences, Professor
Elena Dyakonova
Steklov Mathematical Institute of Russian Academy of Sciences
Email: elena@mi-ras.ru
Doctor of physico-mathematical sciences, Head Scientist Researcher
Valentin Topchii
Mathematical Center in Akademgorodok; Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Email: topchij@gmail.com
Doctor of physico-mathematical sciences, Professor
参考
- D. Vere-Jones, “Ergodic properties of nonnegative matrices. I”, Pacific J. Math., 22:2 (1967), 361–386
- S. Sagitov, “Linear-fractional branching processes with countably many types”, Stochastic Process. Appl., 123:8 (2013), 2940–2956
- P. Braunsteins, S. Hautphenne, “Extinction in lower Hessenberg branching processes with countably many types”, Ann. Appl. Probab., 29:5 (2019), 2782–2818
- А. Н. Колмогоров, “К решению одной биологической задачи”, Изв. НИИ матем. и мех. Томск. ун-та, 2:1 (1938), 7–12
- А. М. Яглом, “Некоторые предельные теоремы теории ветвящихся случайных процессов”, Докл. АН СССР, 56:8 (1947), 795–798
- A. Joffe, F. Spitzer, “On multitype branching processes with $rho leq 1$”, J. Math. Anal. Appl., 19:3 (1967), 409–430
- В. М. Золотарев, “Уточнение ряда теорем теории ветвящихся случайных процессов”, Теория вероятн. и ее примен., 2:2 (1957), 256–266
- R. S. Slack, “A branching process with mean one and possibly infinite variance”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 9 (1968), 139–145
- R. S. Slack, “Further notes on branching processes with mean 1”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 25 (1972/73), 31–38
- В. А. Ватутин, “Предельные теоремы для критических марковских ветвящихся процессов с несколькими типами частиц и бесконечными вторыми моментами”, Матем. сб., 103(145):2(6) (1977), 253–264
- M. I. Goldstein, F. M. Hoppe, “Critical multitype branching processes with infinite variance”, J. Math. Anal. Appl., 65:3 (1978), 675–686
- P. Braunsteins, G. Decrouez, S. Hautphenne, “A pathwise approach to the extinction of branching processes with countably many types”, Stochastic Process. Appl., 129:3 (2019), 713–739
- K. B. Athreya, Hye-Jeong Kang, “Some limit theorems for positive recurrent branching Markov chains. I”, Adv. in Appl. Probab., 30:3 (1998), 693–710
- S. Hautphenne, G. Latouche, G. Nguyen, “Extinction probabilities of branching processes with countably infinitely many types”, Adv. in Appl. Probab., 45:4 (2013), 1068–1082
- H. Kesten, “Supercritical branching processes with countably many types and the size of random Cantor sets”, Probability, statistics, and mathematics, Papers in honor of S. Karlin, Academic Press, Boston, MA, 1989, 103–121
- Т. Харрис, Теория ветвящихся случайных процессов, Мир, М., 1966, 356 с.
- G. T. Tetzlaff, “Criticality in discrete time branching processes with not uniformly bounded types”, Rev. Mat. Apl., 24:1-2 (2003/04), 33–44
- Б. А. Севастьянов, Ветвящиеся процессы, Наука, М., 1971, 436 с.
- Е. Сенета, Правильно меняющиеся функции, Наука, М., 1985, 142 с.
- В. Феллер, Введение в теорию вероятностей и ее приложения, т. 2, 2-е изд., Мир, М., 1984, 752 с.
补充文件
