The gradient projection algorithm for a proximally smooth set and a function with Lipschitz continuous gradient
- Авторлар: Balashov M.V.1
-
Мекемелер:
- V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences
- Шығарылым: Том 211, № 4 (2020)
- Беттер: 3-26
- Бөлім: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/133320
- DOI: https://doi.org/10.4213/sm9214
- ID: 133320
Дәйексөз келтіру
Аннотация
Авторлар туралы
Maxim Balashov
V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences
Email: balashov73@mail.ru
Doctor of physico-mathematical sciences, Associate professor
Әдебиет тізімі
- A. A. Goldstein, “Convex programming in Hilbert space”, Bull. Amer. Math. Soc., 70:5 (1964), 709–710
- Е. С. Левитин, Б. Т. Поляк, “Методы минимизации при наличии ограничений”, Ж. вычисл. матем. и матем. физ., 6:5 (1966), 787–823
- Б. Т. Поляк, “Градиентные методы минимизации функционалов”, Ж. вычисл. матем. и матем. физ., 3:4 (1963), 643–653
- Б. Т. Поляк, Введение в оптимизацию, Наука, М., 1983, 384 с.
- Yu. Nesterov, Introductory lectures on convex optimization. A basic course, Appl. Optim., 87, Kluwer Acad. Publ., Boston, MA, 2004, xviii+236 pp.
- H. Karimi, J. Nutini, M. Schmidt, “Linear convergence of gradient and proximal-gradient methods under the Polyak–Łojasiewicz condition”, Machine learning and knowledge discovery in databases. ECML PKDD 2016, Lecture Notes in Comput. Sci., 9851, Springer, Cham, 2016, 795–811
- Б. Т. Поляк, “Градиентные методы минимизации функционалов”, Ж. вычисл. матем. и матем. физ., 3:4 (1963), 643–653
- S. Lojasiewicz, “Une propriete topologique des sous-ensembles analitiques reels”, Les equations aux derivees partielles (Paris, 1962), Ed. du CNRS, Paris, 1963, 87–89
- Zhi-Quan Luo, “New error bounds and their applications to convergence analysis of iterative algorithms”, Error bounds in mathematical programming (Kowloon, 1998), Math. Program., 88:2, Ser. B (2000), 341–355
- J. Bolte, Trong Phong Nguyen, J. Peypouquet, B. W. Suter, “From error bounds to the complexity of first-order descent methods for convex functions”, Math. Program., 165:2, Ser. A (2017), 471–507
- D. Drusvyatskiy, A. S. Lewis, “Error bounds, quadratic growth, and linear convergence of proximal methods”, Math. Oper. Res., 43:3 (2018), 919–948
- Tianbao Yang, Qihang Lin, “RSG: Beating Subgradient Method without Smoothness and Strong Convexity”, J. Mach. Learn. Res., 19 (2018), 6, 33 pp.
- M. V. Balashov, M. O. Golubev, “About the Lipschitz property of the metric projection in the Hilbert space”, J. Math. Anal. Appl., 394:2 (2012), 545–551
- М. В. Балашов, “Максимизации функции с непрерывным по Липшицу градиентом”, Фундамент. и прикл. матем., 18:5 (2013), 17–25
- M. V. Balashov, B. T. Polyak, A. A. Tremba, “Gradient projection and conditional gradient methods for constrained nonconvex minimization”, Numer. Funct. Anal. Optim., Publ. online: 2020
- J.-Ph. Vial, “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259
- F. H. Clarke, R. J. Stern, P. R. Wolenski, “Proximal smoothness and lower-$C^{2}$ property”, J. Convex Anal., 2:1-2 (1995), 117–144
- М. В. Балашов, Г. Е. Иванов, “Слабо выпуклые и проксимально гладкие множества в банаховых пространствах”, Изв. РАН. Сер. матем., 73:3 (2009), 23–66
- R. A. Poliquin, R. T. Rockafellar, L. Thibault, “Local differentiability of distance functions”, Trans. Amer. Math. Soc., 352:11 (2000), 5231–5249
- M. V. Balashov, “About the gradient projection algorithm for a strongly convex function and a proximally smooth set”, J. Convex Anal., 24:2 (2017), 493–500
- A. D. Ioffe, “Metric regularity – a survey. Part 1. Theory”, J. Aust. Math. Soc., 101:2 (2016), 188–243
- M. Bounkhel, L. Thibault, “On various notions of regularity of sets in nonsmooth analysis”, Nonlinear Anal., 48:2, Ser. A: Theory Methods (2002), 223–246
- Е. С. Половинкин, Многозначный анализ и дифференциальные включения, Физматлит, М., 2015, 524 с.
Қосымша файлдар
