The gradient projection algorithm for a proximally smooth set and a function with Lipschitz continuous gradient

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider the minimization problem for a nonconvex function with Lipschitz continuous gradient on a proximally smooth (possibly nonconvex) subset of a finite-dimensional Euclidean space. We introduce the error bound condition with exponent $\alpha\in(0,1]$ for the gradient mapping. Under this condition, it is shown that the standard gradient projection algorithm converges to a solution of the problem linearly or sublinearly, depending on the value of the exponent $\alpha$. This paper is theoretical. Bibliography: 23 titles.

Авторлар туралы

Maxim Balashov

V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences

Email: balashov73@mail.ru
Doctor of physico-mathematical sciences, Associate professor

Әдебиет тізімі

  1. A. A. Goldstein, “Convex programming in Hilbert space”, Bull. Amer. Math. Soc., 70:5 (1964), 709–710
  2. Е. С. Левитин, Б. Т. Поляк, “Методы минимизации при наличии ограничений”, Ж. вычисл. матем. и матем. физ., 6:5 (1966), 787–823
  3. Б. Т. Поляк, “Градиентные методы минимизации функционалов”, Ж. вычисл. матем. и матем. физ., 3:4 (1963), 643–653
  4. Б. Т. Поляк, Введение в оптимизацию, Наука, М., 1983, 384 с.
  5. Yu. Nesterov, Introductory lectures on convex optimization. A basic course, Appl. Optim., 87, Kluwer Acad. Publ., Boston, MA, 2004, xviii+236 pp.
  6. H. Karimi, J. Nutini, M. Schmidt, “Linear convergence of gradient and proximal-gradient methods under the Polyak–Łojasiewicz condition”, Machine learning and knowledge discovery in databases. ECML PKDD 2016, Lecture Notes in Comput. Sci., 9851, Springer, Cham, 2016, 795–811
  7. Б. Т. Поляк, “Градиентные методы минимизации функционалов”, Ж. вычисл. матем. и матем. физ., 3:4 (1963), 643–653
  8. S. Lojasiewicz, “Une propriete topologique des sous-ensembles analitiques reels”, Les equations aux derivees partielles (Paris, 1962), Ed. du CNRS, Paris, 1963, 87–89
  9. Zhi-Quan Luo, “New error bounds and their applications to convergence analysis of iterative algorithms”, Error bounds in mathematical programming (Kowloon, 1998), Math. Program., 88:2, Ser. B (2000), 341–355
  10. J. Bolte, Trong Phong Nguyen, J. Peypouquet, B. W. Suter, “From error bounds to the complexity of first-order descent methods for convex functions”, Math. Program., 165:2, Ser. A (2017), 471–507
  11. D. Drusvyatskiy, A. S. Lewis, “Error bounds, quadratic growth, and linear convergence of proximal methods”, Math. Oper. Res., 43:3 (2018), 919–948
  12. Tianbao Yang, Qihang Lin, “RSG: Beating Subgradient Method without Smoothness and Strong Convexity”, J. Mach. Learn. Res., 19 (2018), 6, 33 pp.
  13. M. V. Balashov, M. O. Golubev, “About the Lipschitz property of the metric projection in the Hilbert space”, J. Math. Anal. Appl., 394:2 (2012), 545–551
  14. М. В. Балашов, “Максимизации функции с непрерывным по Липшицу градиентом”, Фундамент. и прикл. матем., 18:5 (2013), 17–25
  15. M. V. Balashov, B. T. Polyak, A. A. Tremba, “Gradient projection and conditional gradient methods for constrained nonconvex minimization”, Numer. Funct. Anal. Optim., Publ. online: 2020
  16. J.-Ph. Vial, “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259
  17. F. H. Clarke, R. J. Stern, P. R. Wolenski, “Proximal smoothness and lower-$C^{2}$ property”, J. Convex Anal., 2:1-2 (1995), 117–144
  18. М. В. Балашов, Г. Е. Иванов, “Слабо выпуклые и проксимально гладкие множества в банаховых пространствах”, Изв. РАН. Сер. матем., 73:3 (2009), 23–66
  19. R. A. Poliquin, R. T. Rockafellar, L. Thibault, “Local differentiability of distance functions”, Trans. Amer. Math. Soc., 352:11 (2000), 5231–5249
  20. M. V. Balashov, “About the gradient projection algorithm for a strongly convex function and a proximally smooth set”, J. Convex Anal., 24:2 (2017), 493–500
  21. A. D. Ioffe, “Metric regularity – a survey. Part 1. Theory”, J. Aust. Math. Soc., 101:2 (2016), 188–243
  22. M. Bounkhel, L. Thibault, “On various notions of regularity of sets in nonsmooth analysis”, Nonlinear Anal., 48:2, Ser. A: Theory Methods (2002), 223–246
  23. Е. С. Половинкин, Многозначный анализ и дифференциальные включения, Физматлит, М., 2015, 524 с.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Balashov M.V., 2020

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».