Symmetries in left-invariant optimal control problems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Left-invariant optimal control problems on Lie groups are considered. When studying the optimality of extreme trajectories, the crucial role is played by symmetries of the exponential map that are induced by symmetries of the conjugate subsystem of the Hamiltonian system of the Pontryagin maximum principle. A general construction is obtained for these symmetries of the exponential map for connected Lie groups with generic coadjoint orbits of codimension not exceeding one and with a connected stabilizer. Bibliography: 32 titles.

About the authors

Alexey Vladimirovich Podobryaev

Ailamazyan Program Systems Institute of Russian Academy of Sciences

Email: alex@alex.botik.ru
Candidate of physico-mathematical sciences, no status

References

  1. А. А. Аграчев, Ю. Л. Сачков, Геометрическая теория управления, Физматлит, М., 2005, 392 с.
  2. Л. С. Понтрягин, В. Г. Болтянский, Р. В. Гамкрелидзе, Е. Ф. Мищенко, Математическая теория оптимальных процессов, Физматгиз, М., 1961, 391 с.
  3. Ю. Л. Сачков, “Множество Максвелла в обобщенной задаче Дидоны”, Матем. сб., 197:4 (2006), 123–150
  4. S. G. Krantz, H. R. Parks, The implicit function theorem. History, theory, and applications, Birkhäuser Boston, Inc., Boston, MA, 2002, xii+163 pp.
  5. Yu. L. Sachkov, “Maxwell strata in the Euler elastic problem”, J. Dyn. Control Syst., 14:2 (2008), 169–234
  6. А. А. Ардентов, “Кратные решения в задаче Эйлера об эластиках”, Автомат. и телемех., 2018, № 7, 22–40
  7. A. Agrachev, D. Barilari, U. Boscain, A comprehensive introduction to sub-Riemannian geometry, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2019
  8. C. Autenried, M. Godoy Molina, “The sub-Riemannian cut locus of $H$-type groups”, Math. Nachr., 289:1 (2016), 4–12
  9. O. Myasnichenko, “Nilpotent $(3, 6)$ sub-Riemannian problem”, J. Dyn. Control Syst., 8:4 (2002), 573–597
  10. A. Montanari, D. Morbidelli, “On the subRiemannian cut locus in a model of free two-step Carnot group”, Calc. Var. Partial Differential Equations, 56:2 (2017), 36, 26 pp.
  11. L. Rizzi, U. Serres, “On the cut locus of free, step two Carnot groups”, Proc. Amer. Math. Soc., 145:12 (2017), 5341–5357
  12. Ю. Л. Сачков, “Дискретные симметрии в обобщенной задаче Дидоны”, Матем. сб., 197:2 (2006), 95–116
  13. Ю. Л. Сачков, “Полное описание стратов Максвелла в обобщенной задаче Дидоны”, Матем. сб., 197:6 (2006), 111–160
  14. А. А. Ардентов, Ю. Л. Сачков, “Экстремальные траектории в нильпотентной субримановой задаче на группе Энгеля”, Матем. сб., 202:11 (2011), 31–54
  15. A. A. Ardentov, Yu. L. Sachkov, “Conjugate points in nilpotent sub-Riemannian problem on the Engel group”, J. Math. Sci. (N. Y.), 195:3 (2013), 369–390
  16. A. A. Ardentov, Yu. L. Sachkov, “Cut time in sub-Riemannian problem on Engel group”, ESAIM Control Optim. Calc. Var., 21:4 (2015), 958–988
  17. A. A. Ardentov, Yu. L. Sachkov, “Maxwell strata and cut locus in the sub-Riemannian problem on the Engel group”, Regul. Chaotic Dyn., 22:8 (2017), 909–936
  18. U. Boscain, F. Rossi, “Invariant Carnot–Caratheodory metrics on $mathrm S^3$, $operatorname{SO}(3)$, $operatorname{SL}(2)$, and lens spaces”, SIAM J. Control Optim., 47:4 (2008), 1851–1878
  19. В. Н. Берестовский, И. А. Зубарева, “Геодезические и кратчайшие специальной субримановой метрики на группе Ли ${SL}(2)$”, Сиб. матем. журн., 57:3 (2016), 527–542
  20. В. Н. Берестовский, И. А. Зубарева, “Геодезические и кратчайшие специальной субримановой метрики на группе Ли ${SO}(3)$”, Сиб. матем. журн., 56:4 (2015), 762–774
  21. C. Autenried, I. Markina, “Sub-Riemannian geometry of Stiefel manifolds”, SIAM J. Control Optim., 52:2 (2014), 939–959
  22. A. V. Podobryaev, Yu. L. Sachkov, “Cut locus of a left invariant Riemannian metric on $mathrm{SO}(3)$ in the axisymmetric case”, J. Geom. Phys., 110 (2016), 436–453
  23. A. V. Podobryaev, Yu. L. Sachkov, “Symmetric Riemannian problem on the group of proper isometries of hyperbolic plane”, J. Dyn. Control Syst., 24:3 (2018), 391–423
  24. I. Moiseev, Yu. L. Sachkov, “Maxwell strata in sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:2 (2010), 380–399
  25. Yu. L. Sachkov, “Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:4 (2010), 1018–1039
  26. Yu. L. Sachkov, “Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 17:2 (2011), 293–321
  27. Ya. A. Butt, Yu. L. Sachkov, A. I. Bhatti, “Maxwell strata and conjugate points in the sub-Riemannian problem on the Lie group $operatorname{SH}(2)$”, J. Dyn. Control Syst., 22:4 (2016), 747–770
  28. Ya. A. Butt, Yu. L. Sachkov, A. I. Bhatti, “Cut locus and optimal synthesis in sub-Riemannian problem on the Lie group $operatorname{SH}(2)$”, J. Dyn. Control Syst., 23:1 (2017), 155–195
  29. Ю. Л. Сачков, “Симметрии и страты Максвелла в задаче об оптимальном качении сферы по плоскости”, Матем. сб., 201:7 (2010), 99–120
  30. А. А. Аграчев, А. В. Сарычев, “Фильтрация алгебры Ли векторных полей и нильпотентная аппроксимация управляемых систем”, Докл. АН СССР, 295:4 (1987), 777–781
  31. J. E. Marsden, T. S. Ratiu, Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, Texts Appl. Math., 17, 2nd ed., Springer-Verlag, New York, 1999, xviii+582 pp.
  32. J. Marsden, R. Montgomery, T. Ratiu, Reduction, symmetry, and phases in mechanics, Mem. Amer. Math. Soc., 88, no. 436, Amer. Math. Soc., Providence, RI, 1990, iv+110 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Podobryaev A.V.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».