Naturally graded Lie algebras of slow growth
- Авторлар: Millionshchikov D.V.1,2
-
Мекемелер:
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- Steklov Mathematical Institute of Russian Academy of Sciences
- Шығарылым: Том 210, № 6 (2019)
- Беттер: 111-160
- Бөлім: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/133279
- DOI: https://doi.org/10.4213/sm9055
- ID: 133279
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
Dmitry Millionshchikov
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Steklov Mathematical Institute of Russian Academy of Sciences
Email: dmitry.millionschikov@math.msu.ru
Doctor of physico-mathematical sciences, Professor
Әдебиет тізімі
- А. А. Аграчев, “Некоторые вопросы субримановой геометрии”, УМН, 71:6(432) (2016), 3–36
- T. Barron, D. Kerner, M. Tvalavadze, “On varieties of Lie algebras of maximal class”, Canad. J. Math., 67:1 (2015), 55–89
- Y. Benoist, “Une nilvariete non affine”, J. Differential Geom., 41:1 (1995), 21–52
- В. М. Бухштабер, “Полиномиальные алгебры Ли и теорема Зельманова–Шалева”, УМН, 72:6(438) (2017), 199–200
- A. Caranti, S. Mattarei, M. F. Newman, C. M. Scoppola, “Thin groups of prime-power order and thin Lie algebras”, Quart. J. Math. Oxford Ser. (2), 47:3 (1996), 279–296
- A. Caranti, S. Mattarei, M. F. Newman, “Graded Lie algebras of maximal class”, Trans. Amer. Math. Soc., 349:10 (1997), 4021–4051
- А. Фиаловски, “Классификация градуированных алгебр Ли с двумя образующими”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1983, № 2, 62–64
- Д. Б. Фукс, Когомологии бесконечномерных алгебр Ли, Наука, М., 1984, 272 с.
- D. Fuchs, C. Wilmarth, “Laplacian spectrum for the nilpotent Kac–Moody Lie algebras”, Pacific J. Math., 247:2 (2010), 323–334
- L. Garcia Vergnolle, “Sur les algèbres de Lie quasi-filiformes admettant un tore de derivations”, Manuscripta Math., 124:4 (2007), 489–505
- H. Garland, “Dedekind's $eta$-function and the cohomology of infinite-dimensional Lie algebras”, Proc. Nat. Acad. Sci. U.S.A., 72:7 (1975), 2493–2495
- J. R. Gomez, A. Jimenez-Merchan, J. Reyes, “Maximum length filiform Lie algebras”, Extracta Math., 16:3 (2001), 405–421 (Spanish)
- J. R. Gomez, A. Jimenez-Merchan, “Naturally graded quasi-filiform Lie algebras”, J. Algebra, 256:1 (2002), 211–228
- M. Gromov, “Carnot–Caratheodory spaces seen from within”, Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 79–323
- В. Г. Кац, Бесконечномерные алгебры Ли, Мир, М., 1993, 426 с.
- V. G. Kac, “Some problems on infinite dimensional Lie algebras and their representations”, Lie algebras and related topics (New Brunswick, NJ, 1981), Lecture Notes in Math., 933, Springer, Berlin–New York, 1982, 117–126
- G. R. Krause, T. H. Lenagan, Growth of algebras and Gelfand–Kirillov dimension, Grad. Stud. Math., 22, Rev. ed., Amer. Math. Soc., Providence, RI, 2000, x+212 pp.
- S. Kumar, “Geometry of Schubert cells and cohomology of Kac–Moody Lie algebras”, J. Differential Geom., 20:2 (1984), 389–431
- J. Lepowsky, “Generalized Verma modules, loop spaces cohomology and MacDonald-type identities”, Ann. Sci. Ecole Norm. Sup. (4), 12:2 (1979), 169–234
- J. Lepowsky, S. Milne, “Lie algebraic approaches to classical partition identities”, Adv. in Math., 29:1 (1978), 15–59
- O. Mathieu, “Classification of simple graded Lie algebras of finite growth”, Invent. Math., 108 (1990), 455–519
- Д. В. Миллионщиков, “Филиформные $mathbb N$-градуированные алгебры Ли”, УМН, 57:2(344) (2002), 197–198
- D. V. Millionshchikov, “Graded filiform Lie algebras and symplectic nilmanifolds”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 212, Adv. Math. Sci., 55, Amer. Math. Soc., Providence, RI, 2004, 259–279
- Д. В. Миллионщиков, “Характеристические алгебры Ли уравнений синус-Гордона и Цицейки”, УМН, 72:6(438) (2017), 203–204
- J. Milnor, “On fundamental groups of complete affinely flat manifolds”, Adv. in Math., 25:2 (1977), 178–187
- R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, Math. Surveys Monogr., 91, Amer. Math. Soc., Providence, RI, 2002, xx+259 pp.
- В. В. Морозов, “Классификация нильпотентных алгебр Ли шестого порядка”, Изв. вузов. Матем., 1958, № 4, 161–171
- V. Petrogradsky, “Nil Lie $p$-algebras of slow growth”, Comm. Algebra, 45:7 (2017), 2912–2941
- А. В. Рожков, “Нижний центральный ряд одной группы автоморфизмов деревьев”, Матем. заметки, 60:2 (1996), 225–237
- A. Shalev, E. I. Zelmanov, “Narrow Lie algebras: a coclass theory and a characterization of the Witt algebra”, J. Algebra, 189:2 (1997), 294–331
- A. Shalev, E. I. Zelmanov, “Narrow algebras and groups”, J. Math. Sci. (N. Y.), 93:6 (1999), 951–963
- M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application à l'etude de la variete des algèbres de Lie nilpotentes”, Bull. Soc. Math. France, 98 (1970), 81–116
Қосымша файлдар
