Высокоэффективная генерация третьей гармоники в среде с квадратичной и кубичной нелинейностями в результате каскадной генерации второй гармоники
- Autores: Trofimov V.A.1, Харитонов Д.М.2, Федотов М.В.2, Yang Y.1, Deng C.1
-
Afiliações:
- South China University of Technology
- Московский государственный университет имени М.В.Ломоносова
- Edição: Volume 53, Nº 8 (2023)
- Páginas: 645-660
- Seção: Нелинейно-оптические явления
- URL: https://bakhtiniada.ru/0368-7147/article/view/255542
- ID: 255542
Citar
Resumo
A new highly efficient method for tripling the frequency of optical waves is proposed based on cascade second-harmonic generation in a medium with quadratic susceptibility taking into account the cubic response of the medium. The interactions of the fundamental, second, and third harmonic waves occurred at a large phase detuning between the fundamental and second harmonic waves. In a medium with only quadratic susceptibility, this resulted in a response of the medium similar to the response inherent in a medium with cubic nonlinearity, the sign of which is determined by the sign of the above-mentioned phase detuning. The process of wave interaction is considered theoretically based on the multiscale method. Without using the specified field approximation, the modes of frequency conversion, intensity and phase evolution of interacting waves are analyzed without taking into account their second-order dispersion and diffraction. A bistable mode of frequency tripling, as well as a mode of complete suppression of wave generation at the tripled frequency and a mode of suppression of the Kerr effect are discovered. Computer simulation has shown the possibility of pumping 98.5% of the incident wave energy into the third harmonic. A simpler and more physically visual (compared to the multi-scale method) method for analyzing cascade processes with a large phase mismatch between a pair of interacting waves is also proposed.
Sobre autores
V. Trofimov
South China University of Technology
Autor responsável pela correspondência
Email: trofimov@scut.edu.cn
República da China
Д. Харитонов
Московский государственный университет имени М.В.Ломоносова
Email: trofimov@scut.edu.cn
Rússia, Москва, Ленинские горы, д.1. стр. 52, 119992
М. Федотов
Московский государственный университет имени М.В.Ломоносова
Email: trofimov@scut.edu.cn
Rússia, Москва, Ленинские горы, д.1. стр. 52, 119992
Y. Yang
South China University of Technology
Email: trofimov@scut.edu.cn
República da China
C. Deng
South China University of Technology
Email: trofimov@scut.edu.cn
Rússia
Bibliografia
- Craxton R.S. Opt. Commun., 34, 474 (1980).
- Craxton R. IEEE J. Quantum Electron., 17, 1771 (1981).
- Dubietis A., Tamošauskas G., Varanavičius A. Opt. Commun., 186, 211 (2000).
- Zhang T., Kato Y., Daido H. IEEE J. Quantum Electron., 32, 127 (1996).
- Wang X., Zhao H., Cao Y., Niu Y., Shen J. Langmuir, 34, 10262 (2018).
- Qi H., Wang Z., Yu F., Xu X., Zhao X. IEEE Photonics J., 8, 1 (2016).
- Qi H., Wang Z., Yu F., Sun X., Xu X., Zhao X. Opt. Lett., 41, 5823 (2016).
- Ren H.K., Qi H.W., Wang Z.P., Wu Z.X., Wang M.X., Sun Y.X., Sun X., Xu X.G. Chin. Phys. B, 27, 114202 (2018).
- Zhu S., Zhu Y., Ming N. Science, 278, 843 (1997).
- Zhang C., Wei H., Zhu Y.Y., Wang H.T., Zhu S.N., Ming N.B. Opt. Lett., 26, 899 (2001).
- Longhi S. Opt. Lett., 32, 1791 (2007).
- Vernay A., Bonnet-Gamard L., Boutou V., Trajtenberg-Mills S., Arie A., Boulanger B. OSA Continuum, 3, 1536 (2020).
- Das S.K., Mukhopadhyay S., Sinha N., Saha A., Datta P.K., Saltiel S.M., Andreani L.C. Opt. Commun., 262, 108 (2006).
- Qiu P., Penzkofer A. Appl. Phys. B, 45, 225 (1998).
- Tomov I.V., Van Wonterghem B., Rentzepis P.M. Appl. Opt.. 31, 4172 (1992).
- Banks P.S., Feit M.D., Perry M.D. Opt. Lett., 24, 4 (1999).
- Banks P.S., Feit M.D., Perry M.D. JOSA B, 19, 102 (2001).
- Boulanger B., Rousseau I., Marnier G. J. Phys. B: Atomic, Molecular and Optical Physics, 32, 475 (1999).
- Feve J.P., Boulanger B., Guillien Y. Opt. Lett., 25, 1373 (2000).
- Miyata K., Petrov V., Noack F. Opt. Lett., 36, 3627 (2011).
- Qin Y.Q., Zhu Y.Y., Zhang C., Ming N.B. JOSA B, 20, 73 (2003).
- Zhang T., Yamakawa K. Japanese J. Appl. Phys., 39, 91 (2000).
- Saltiel S.M., Sukhorukov A.A., Kivshar Y.S. Progress in Optics, 47, 1 (2005).
- Карамзин Ю.Н., Сухоруков А.П. Письма в ЖЭТФ, 20, 734 (1974) [JETF Lett., 20, 339 (1974)].
- Torruellas W.E., Wang Z., Hagan D.J., VanStryland E.W., Stegeman G.I., Torner L., Menyuk C.R. Phys. Rev. Lett., 74, 5036 (1995).
- Schiek R., Baek Y., Stegeman G.I. Phys. Rev. E, 53, 1138 (1996).
- Di Trapani P., Caironi D., Valiulis G., Dubietis A., Danielius R., Piskarskas A. Phys. Review Lett, 81, 570 (1998).
- Buryak A.V., Di Trapani P., Skryabin D.V., Trillo S. Phys. Rep., 370, 63 (2002).
- Boyd R.W. Nonlinear Optics (Academic Press, 2020).
- Nayfeh A.H. Introduction to Perturbation Techniques (John Wiley & Sons, 2011).
- Conti C., Trillo S., Di Trapani P., Kilius J., Bramati A., Minardi S., Chinaglia W., Valiulis G. JOSA B, 19, 852 (2002).
- Trofimov V.A., Kharitonov D.M., Fedotov M.V. JOSA B, 35, 3069 (2018).
- Гурзадян Г.Г., Дмитриев В.Г., Никогосян Д.Н. Нелинейно-оптические кристаллы. Свойства и применение в квантовой электронике (М.: Радио и Связь, 1991) [Handbook of Nonlinear Optical Crystals (Springer, 2013)].
- Eckardt R.C., Masuda H., Fan Y.X., Byer R.L. IEEE J. Quantum Electron., 26, 922 (1990).
- Chen C., Xu Z., Deng D., Zhang J., Wong G.K., Wu B., Ye N., Tang D. Appl. Phys. Lett., 68, 2930 (1996).
- Nikogosyan D.N. Nonlinear Optical Crystals: A Complete Survey (Springer Science & Business Media, 2006).
- Ganeev R.A., Kulagin I.A., Ryasnyansky A.I., Tugushev R.I., Usmanov T. Opt. Commun., 229, 403 (2004).
- Li F.Q, Zong N., Zhang F.F., Yang J., Yang F., Peng Q.G., Cui D.F., Zhang J.Y., Wang X.Y., Chen C.T., Xu Z.Y. Appl. Phys. B, 108, 301 (2011).
Arquivos suplementares
