Упругие свойства магнитоактивного эластомера

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Магнитоактивный эластомер или магнитореологический эластомер – композиционный материал, состоящий из упругой эластичной матрицы и магнитного наполнителя. Исследованы упругие свойства материала под воздействием внешнего магнитного поля. Под действием магнитного поля упругость композита возрастает в десятки раз. Упругие свойства материала в магнитном поле сильно зависят от величины деформации материала. Данный тип уникального магнитного композита является хорошим кандидатом для использования его в качестве рабочего тела в управляемых демпфирующих устройствах.

Об авторах

Г. В. Степанов

Акционерное общество “Государственный Ордена Трудового Красного Знамени Научно-исследовательский институт химии и технологии элементоорганических соединений”

Автор, ответственный за переписку.
Email: gstepanov@mail.ru
Россия, Москва

П. А. Стороженко

Акционерное общество “Государственный Ордена Трудового Красного Знамени Научно-исследовательский институт химии и технологии элементоорганических соединений”

Email: gstepanov@mail.ru
Россия, Москва

Список литературы

  1. Liao G.J., Gong X.L., Xuan S.H. // J. Intell. Mater. Syst. Struct. 2012. V. 23. No. 1. P. 25.
  2. Liao G.J., Gong1 X.L., Kang C.J. et al. // Smart Mater. Struct. 2011. V. 20. Art. No. 075015.
  3. Hu G., Guo M., Li W. et al. // Smart Mater. Struct. 2011. V. 20. No.12. P. 1.
  4. Sun S.S., Chen Y., Yang J. // Smart Mater. Struct. 2014. V.23. No. 7. Art. No. 075009.
  5. Li W.H., Zhang X.Z., Du H. Advances in elastomers I: blends and interpenetrating networks. Berlin: Springer, 2013. P. 357.
  6. Ahamed R., Choi Seung-Bok, Ferdaus M.M. // J. Intell. Mater. Syst. Struct. 2018. V. 29. No. 10. P. 2051.
  7. Sun S., Deng H., Yang J. et al. // J. Intell. Mater. Syst. Struct. 2015. V. 26. No. 14. P. 1757.
  8. Kavlicoglu B., Wallis B., Sahin H., Liu Y. // Act. Pass. Smart Struct. Integr. Syst. 2011. V. 79. P. 770.
  9. Kim H.K., Kim H.S., Kim Y.-K. // Smart Mater. Struct. 2016. V. 26. No. 1. Art. No. 015016.
  10. Samir B., Kumbhara S.P., Chavana S.S., Gawad E.B. // Mech. Syst. Signal Process. 2018. V. 100. P. 208.
  11. https://ro.uow.edu.au/eispapers1/619.
  12. Du G., Huang X., Li Y. et al. // Smart Mater. Struct. 2017. V. 26. Art. No. 095024.
  13. Kim Y.-K., Koo J.-H., Kim K.-S., Kim S. // IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Beijing, 2011). P. 1.
  14. Fu J., Zheng X., Yu M. et al. // IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Wollongong, 2013). P. 1.
  15. Xu Z., Yang J., Gu Y. et al. // J. Guid. Control Dyn. 2016. V. 39. No. 3. P. 677.
  16. Yu G.-J., Wen X.-X., Du C.-B., Guo F. // Adv. Mater. Sci. Eng. 2019. P. 1.
  17. Boczkowska A., Awietjan S.F. // Mater. Sci. Forum. 2010. V. 636–637. Art. No. 766.
  18. Rigbi Z., Jilken L. // J. Magn. Magn. Mater. 1983. V. 37. P. 267.
  19. Shiga T., Okada A., Kurauchi T. // J. Appl. Polym. Sci. 1995. V. 58. P. 787.
  20. Stewart W.M., Ginder J.M., Elie L.D. Method and apparatus for reducing brake shudder. US. Patent 5816587, 1998.
  21. Jolly M.R., Carlson J.D., Munoz B.C. // J. Intell. Mater. Syst. Struct. 1996. No. 7. P. 613.
  22. Jolly M.R., Carlson J.D., Munoz B.C. // Smart Mater. Struct. 1996. V. 5. P. 607.
  23. Demchuk S.A., Kuz’min V.A. // J. Eng. Phys. Thermophys. 2002. V. 75. No. 2. P. 396.
  24. Bellan C., Bossis G. // Int. J. Mod. Phys. B. 2002. V. 16. No. 17–18. P. 2447.
  25. Zhou G.Y. // Smart Mater. Struct. 2003. V. 12. P. 139.
  26. Jolly M.R., Carlson J.D., Munoz B.C., Bullions T.A. // J. Intell. Mater. Syst. Struct. 1996. V. 7. P. 613.
  27. Zhou G.Y. // Smart Mater. Struct. 2004. V. 13. P. 1203.
  28. Coquelle E., Bossis G. // Adv. Science. 2005. V. 17. No. 1–2. P. 132.
  29. Gong X.L., Zhang X.Z., Zhang P.Q. // Polym. Test. 2005. V. 24. P. 669.
  30. Lerner A.A., Cunefare K.A. // J. Intell. Mater. Syst. Struct. 2008. V. 19. No. 5. P. 551.
  31. Böse H. // Int. J. Mod. Phys. B. 2007. V. 21. No. 28–29. P. 4790.
  32. Schrittesser B., Major Z., Filipcsei G. // J. Phys. Conf. Ser. 2009. V. 149. Art. No. 012096.
  33. Kchit N., Lancon P., Bossis G. // J. Physics D. 2009. V. 42. Art. No. 105505.
  34. Picken An H., Mendes S.J. // Soft Matter. 2010. V. 6. P. 4497.
  35. Hoang N., Zhang N., Du H. // Smart Mater. Struct. 2010. V. 20. Art. No. 015012.
  36. Yu M., Zhu M., Fu J., Yang P.A., Qi S. // Smart Mater. Struct. 2015. V. 24. No. 11. Art. No. 115021.
  37. Schubert G., Harrison P. // Polym. Test. 2015. V. 42. P. 122.
  38. Khairi M.H.A., Fatah A.Y.A., Mazlan S.A. // Int. J. Mol. Sci. 2019. V. 20. No. 17. Art. No. 4085.
  39. Sebald G., Nakano M., Lallart M. et al. // Sci. Technol. Adv. Mater. 2017. V. 18. No. 1. P. 766.
  40. Winger J., Schümann M., Kupka A., Odenbach S. // J. Magn. Magn. Mater. 2019. V. 481. P. 176.
  41. Stepanov G.V., Borin D. Yu., Raikher Yu.L. et al. // J. Phys. Cond. Matt. 2008. V. 20. Art. No. 204121.
  42. Chertovich A.V., Stepanov G.V., Kramarenko E. Yu., Khokhlov A.R. // Macromol. Mater. Eng. 2010. V. 295. P. 336.
  43. Stepanov G.V., Borin D.Yu., Odenbach S. // J. Phys. Conf. Ser. 2009. V. 149. No. 1. Art. No. 012098.
  44. Stoll A., Mayer M., Monkman G.J., Shamonin M. // J. Appl. Polym. Sci. 2014. V. 131. No. 2. Art. No. 39793.
  45. Böse H., Röder R. // J. Phys. Conf. Ser. 2009. V. 149. Art. No. 012090.
  46. Molchanov V.S., Stepanov G.V., Vasiliev V.G. et al. // Macromol. Mater. Eng. 2014. V. 299. No. 9. P. 1116.
  47. Abramchuk S.S., Grishin D.A., Kramarenko E. Yu., Stepanov G.V. // Polym. Sci. Ser. A. 2006. V. 48. P. 138.
  48. Stepanov G.V., Abramchuk S.S., Grishin D.A. et al. // Polymer. 2007. V. 48. P. 488.
  49. Sorokin V.V., Stepanov G.V., Shamonin M. et al. // Polymer. 2015. V. 76. P. 191.
  50. Sorokin V.V., Stepanov G.V., Shamonin M. et al. // Smart Mater. Struct. 2017. V. 26. Art. No. 035019.
  51. Sorokin V.V., Ecker E., Stepanov G.V. et al. // Soft Matter. 2014. V. 10. P. 8765.
  52. Stepanov G.V., Borin D.Yu., Kramarenko E.Yu. et al. // Polymer Sci. Ser. A. 2014. V. 56. No. 5. P. 603.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».