Optical spectroscopy of an excited Laughlin liquid

封面

如何引用文章

全文:

详细

Neutral excitations with zero momentum in a Laughlin liquid at an electron filling factor of 1/3 have been studied. It was found that the lowest in energy are spin-magnetogravitons, excitations with a simultaneous change in the electron density in the Laughlin liquid and the spin quantum number of the electron system. The experimental possibility of the formation of new quasi-equilibrium states of anionic matter – Laughlin solutions of spin-magnetogravitons – is demonstrated. A new type of optical scattering is observed in Laughlin solutions.

全文:

ВВЕДЕНИЕ

В трехмерных электронных системах статистика квазичастиц может быть либо фермионной, либо бозонной. В двумерной электронной системе, помещенной в магнитное поле, ситуация со статистикой квазичастиц кардинально изменяется. Становятся возможны самые различные энионные статистики в промежутке от бозонной до фермионной. Экспериментальные свидетельства того, что квазичастицы в двумерных электронных системах являются энионами, были продемонстрированы недавно. Показано, что в лафлиновской жидкости на факторе заполнения электронов 1/3 заряженные квазичастицы ведут себя как энионы со статистикой π/3 [1, 2]. Таким образом, были получены первые прямые экспериментальные свидетельства существования энионной материи.

Учитывая то, что лафлиновская жидкость является диэлектриком, ее непосредственное использование для прикладных задач возможно посредством создания плотных ансамблей нейтральных возбуждений. Для этого необходимо ответить на вопрос, чем являются нейтральные возбуждения, рассматривая их как многочастичные нейтральные комплексы энионных квазичастиц. Теоретический консенсус на этот счет существует для магниторотонов – нейтральных возбуждений с единичным орбитальным моментом. Предполагается, что магниторотоны являются бозонами, хотя проверить это утверждение в настоящее время не представляется возможным, так как магниторотоны хорошо определены при больших обобщенных импульсах порядка обратной магнитной длины. При нулевом импульсе, случае наиболее интересном для экспериментальных исследований, магниторотоны попадают в континуум многоротонных возбуждений и затухают.

Теоретически удается выделить новую низкоэнергетическую ветвь нейтральных возбуждений, выживающую при нулевом импульсе: ветвь магнитогравитонов с орбитальным моментом 2. Принято описывать магнитогравитоны на языке возмущений пространственной метрики, введенной для системы черн-саймоновских квазичастиц [3]. Естественно, что с помощью дипольно-разрешенных оптических переходов создать подобные возбуждения невозможно. Тем не менее, экспериментально удалось создать условия для формирования плотных ансамблей не самих магнитогравитонов, а их компаньонов с единичным спином (будем называть их в дальнейшем «спин-магнитогравитонами», хотя на данный момент неизвестен точный орбитальный момент этих возбуждений, и корректность подобного названия может быть поставлена под сомнение) [4].

Оказалось, что для наиболее исследованной лафлиновской жидкости на основе полупроводниковой системы GaAs/AlGaAs нейтральные возбуждения без изменения спинового квантового числа (магниторотоны и магнитогравитоны), попадают в континуум возбуждений с изменением спинового квантового числа [4]. Таким образом, именно по энергии возбуждения, спин-магнитогравитоны имеют беспрецедентно длинные времена жизни (более 10 с), что позволяет создавать новые материальные системы: лафлиновские растворы спин-магнитогравитонов контролируемой плотности, используя слабо разрешенные оптические переходы из валентной зоны в зону проводимости квантовой ямы с электронной системой. Появляется экспериментальная возможность полного насыщения лафлиновской жидкости возбуждениями, когда плотность спин-магнитогравитонов приближается к теоретически допустимому пределу (1/10 от плотности электронов в системе или 1/30 от плотности квантов магнитного потока) [5].

ЭКСПЕРИМЕНТ

Лафлиновские растворы спин-магнитогравитонов, демонстрирует нелинейный оптический отклик (рис. 1), который объясняется новым типом рассеяния света: антистоксовым-стоксовым когерентным рассеянием света [6]. При этом типе рассеяния сохраняются энергия и продольный импульс налетающих и рассеянных фотонов. Соответственно, сигнал антистоксового-стоксового когерентного рассеяния (аССР) света накладывается на сигнал отражения. Заметим, что в стандартных экспериментах по упругому рассеянию света отношение сигналов аССР и отражения света настолько мало, что отличить оптический сигнал первого процесса на фоне второго не представляется возможным. Однако нарушение симметрии по отношению к обращению времени в лафлиновской жидкости и сверхдлинные времена жизни спин-магнитогравитонов создают уникальную возможность прямого наблюдения этого интересного физического явления. Более того, при насыщении лафлиновской жидкости спин-магнитогравитонами с плотностью порядка 1/100 от плотности электронов, формирующих лафлиновскую жидкость, аССР становится доминирующим процессом рассеяния света. Аналогичный процесс рассеяния света должен был бы наблюдаться и для других типов возбуждений в твердом теле (фононов, плазмонов, магнонов и т.д.), однако из-за сложности отделения сигнала аССР от обратного упругого рассеяния света этот процесс рассеяния ранее экспериментально не детектировался.

 

Рис. 1. Интенсивность сигнала упругого обратного рассеяния света в зависимости от мощности лазерного возбуждения (точки; слева). Интенсивность сигнала нормирована на коэффициент пропорциональности α из уравнения (1). Зеленая, черная и красная линии – корневая, линейная и квадратичная функции мощности возбуждения, соответственно. Оценочная плотность спин-магнитогравитонов в лафлиновской жидкости (в долях от плотности электронов) в зависимости от мощности возбуждения, полученная из зависимости слева, как n ~ I/P)–1 (справа). На вставке приведена схема трех оптических процессов: (а) – спонтанное стоксовое рамановское рассеяние света; (b) – когерентное антистоксовое-стоксовое рамановское рассеяние света (аССР); (c) – резонансное упругое обратное рассеяние света

 

Нелинейность интенсивности сигнала аССР определяется двумя процессами: спонтанным стоксовым рамановским рассеянием света, приводящим к созданию спин-магнитогравитонов (диаграмма (а) на рис. 1) и когерентным аССР (диаграмма (b) на рис. 1). Оптические процессы, рассматриваемые в (b) и в (c) (упругое обратное рассеяние), могут быть описаны следующим уравнением: I = αP + βPn, где I – интенсивность отраженного света, P – мощность лазерного возбуждения, n – полное число спин-магнитогравитонов в лафлиновской жидкости. Коэффициент α обозначает вероятность рассеяния света в (c). Этот коэффициент также учитывает способность нашей экспериментальной установки возбуждать электронную систему и собирать отраженный свет. Поэтому, поскольку точное значение α принципиально неизвестно, физический смысл имеет нормированная величина I/α. Вычисляя среднее число возбуждений, созданных в процессе (а) при условии стационарного возбуждения, получаем: dn/dt = γPn/τ = 0, (2) где τ – время жизни спин-магнитогравитонов, а коэффициент γ обозначает вероятность рождения спин-магнитогравитона с нулевым импульсом в процессе (а) с учетом всех неизвестных нашей экспериментальной установки. Таким образом, получаем: I/α = P + ρP2, с ρ = βγτ/α, что дает квадратичную зависимость от мощности оптического возбуждения электронной системы.

На начальном этапе, когда число спин-магнитогравитонов в электронной системе невелико, в спектре отражения доминирует процесс (c) (рис. 1). При этом фотоны, возбуждающие электронную систему, участвуют в процессе (а). Дальнейшее увеличение мощности возбуждения активирует канал рассеяния (b), который определяется числом спин-магнитогравитонов в лафлиновской жидкости. В результате мы наблюдаем квадратичную зависимость сигнала отражения. Как только плотность спин-магнитогравитонов достигнет максимально допустимого значения (полное насыщение лафлиновской жидкости возбуждениями), происходит насыщение каналов рассеяния (а) и (b); т.е. дальнейшее увеличение мощности лазерного возбуждения не приводит к нелинейному росту интенсивности сигнала аССР. Наоборот, наблюдается изменение исследуемой зависимости с квадратичной на сублинейную, что означает эффективное уменьшение средней плотности спин-магнитогравитонов в насыщенной возбуждениями лафлиновской жидкости под воздействием стационарного фотовозбуждения (рис. 1).

ЗАКЛЮЧЕНИЕ

Таким образом, были исследованы нейтральные возбуждения с нулевым импульсом в лафлиновской жидкости на факторе заполнении электронов 1/3 (энионной материи), наиболее интересном случае с экспериментальной точки зрения. Обнаружено, что возбуждения с наименьшей энергией («магнитогравитоны»), связанные с изменением плотности лафлиновской жидкости, попадают в континуум возбуждений, изменяющих электронную плотность и спиновое квантовое число электронной системы одновременно. Таким образом нижайшими по энергии возбуждениями в лафлиновской жидкости оказываются «спин-магнитогравитоны», нейтральные возбуждения с беспрецедентно длинными для двумерных электронных систем временами жизни (более 10 с). Из-за столь длинных времен жизни появляется экспериментальная возможность создавать и исследовать новые квазиравновесные состояния энионной материи – лафлиновские растворы спин-магнитогравитонов с контролируемой плотностью растворенных спин-магнитогравитонов. В лафлиновских растворох, начиная с некоторой критической плотности спин-магнитогравитонов, наблюдается новый тип оптического рассеяния, который предположительно является антистоксовым-стоксовым когерентным рассеянием света на коллективе спин-магнитогравитонов.

Работа выполнена при поддержке Российского научного фонда (проект № 23-12-00011).

×

作者简介

L. Kulik

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kulik@issp.ac.ru
俄罗斯联邦, Chernogolovka

参考

  1. Bartolomei H., Kumar M., Bisognin R. et al. // Science. 2020. V. 368. No. 6487. P. 173.
  2. Nakamura J., Liang S., Gardner G.C., Manfra M.J. // Nature Physics. 2020. V. 16. P. 931.
  3. Haldane F.D.M. // Phys. Rev. Lett. 2011. V. 107. P. 116801.
  4. Kulik L.V., Zhuravlev A.S., Musina L.I. et al. // Nature Commun. 2021. V. 12. P. 6477.
  5. Gorbunov A.V., Larionov A.V., Kulik L.V., Timofeev V.B. // J. Appl. Phys. 2022. V. 132. Art. No. 244301.
  6. Kulik L.V., Zhuravlev A.S., Larionov A.V. et al. // Appl. Phys. Lett. 2023. V. 123. Art. No. 083101.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Signal intensity of elastic backscattering of light as a function of laser excitation power (points; left). The signal intensity is normalised by the proportionality factor α from equation (1). Green, black, and red lines are the root-mean-square, linear, and quadratic functions of the excitation power, respectively. The estimated density of spin-magnetogravitons in the Laughlin liquid (as a fraction of the electron density) as a function of excitation power, obtained from the dependence on the left as n ~ I/(αP)-1 (right). The inset shows a schematic of three optical processes: (a) - spontaneous Stokes Raman scattering of light; (b) - coherent anti-Stokes-Stokes Raman scattering of light (aSSR); (c) - resonant elastic backscattering of light

下载 (298KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».