ELECTRICAL EXPLOSION OF FLAT COPPER CONDUCTORS IN THE CURRENT SKINNING MODE

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The article presents the results of experiments and radiation magnetohydrodynamic simulations of the electrical explosion of flat copper conductors in megagauss magnetic fields. The experiments were carried out on the terawatt-range MIG generator at the current of amplitude up to 2.5 MA and the rise time of 100 ns. The thickness (along the y-axis) of the conductors used was much less than theirs width (along the x-axis) and the current flowed in the z-axis. It was experimentally shown and confirmed by RMGD simulations, that the conductor expands in thickness (along the Mi>y-axis), while plasma expansion along the x-axis is suppressed. This is due to the increased magnetic field at the conductor edges, which also causes earlier explosion of the side faces. A matter from the side faces, that is low-density plasma, flows toward the center of symmetry of the wide faces of the plate. As a result, a plasma channel forms on the wide face of the conductor (at the xz plane) along z-axis about 75 ns after the onset of current flow. X-ray patterns of the conductors were obtained with radiation from the X -pinch “hot spot”. The recorded expansion of the conductor along the y-axis is in good agreement with the results of numerical simulations.

Авторлар туралы

I. Datsko

Institute of High Current Electronics SB RAS

Email: datsko@ovpe.hcei.tsc.ru
Tomsk, Russia

N. Labetskaya

Institute of High Current Electronics SB RAS

Email: natalia@ovpe2.hcei.tsc.ru
Tomsk, Russia

V. Vankevich

Institute of High Current Electronics SB RAS

Tomsk, Russia

S. Chaikovsky

Institute of Electrophysics UB RAS

Ekaterinburg, Russia

V. Oreshkin

Institute of High Current Electronics SB RAS

Tomsk, Russia

E. Oreshkin

P. N. Lebedev Physical Institute RAS

Moscow, Russia

Әдебиет тізімі

  1. Mesyats G.A. // Phys. Uspekhi. 1995. V. 38. P. 567. https://doi.org/10.1070/PU1995v038n06ABEH000089
  2. Burtsev V., Kalinin N., and Luchinsky A. Electrical explosion of conductors and its application in electrophysical installations. M.: Energoatomizdat, 1990.
  3. Sakharov A.D. // Phys. Uspekhi. 1966. V. 9. P. 294. https://doi.org/10.1070/PU1966v009n02ABEH002876
  4. Knoepfel H. Pulsed high magnetic fields: physical effects and generation methods concerning pulsed fields up to the megaersted level. Amsterdam: North Holland Publishing Company, 1970.
  5. Krivosheev S.I., Titkov V.V., and Shneerson G.A. // Technical Physics. 1997. V. 42. P.352. https://doi.org/10.1134/1.1258833
  6. Oreshkin V.I., Chaikovskii S.A., Labetskaya N.A., Ivanova Y.F., Khishchenko K.V., Levashov P.R., Kuskova N.I., and Rud A.D. // Technical Phys. 2012. V. 57. P. 198. https://doi.org/10.1134/S106378421202017X
  7. Stygar W.A., Cuneo M.E., Headley D.I., Ives H.C., Leeper R.J., Mazarakis M.G., Olson C.L., Porter J.L., Wagone T.C., and Woodworth J.R. // Phys. Rev. Special Topics-Accelerators and Beams. 2007. V. 10. P. 030401. https://doi.org/10.1103/PhysRevSTAB.10.030401
  8. Grabovski E.V., Aleksandrov V.V., Gritsuk A.N., Mitrofanov K.N., Oleinik G.M., Zaitsev V.I., Volkov G.S., Lototsky A.P., Gribov A.N., Gasilov V.A., Olkhovskay O.G., Sasorov P.V., Engelko V.I., and Shevelko A.P. // IEEE Pulsed Power and Plasma Science Confer., San Francisco, CA USA, 2013 (unpublished).
  9. Gomez M.R., Slutz S.A., Sefkow A.B., Hahn K.D., Hansen S.B., Knapp P.F., Schmit P.F., Ruiz C.L., Sinars D.B., Harding E.C., Jennings C.A., Awe T.J., Geissel M., Rovang D.C., Smith I.C., Chandler G.A., Cooper G.W., Cuneo M.E., Harvey-Thompson A.J., Herrmann M.C., Hess M.H., Lamppa D.C., Martin M.R., McBride R.D., Peterson K.J., Porter J.L., Rochau G.A., M.E. Savage, Schroen D.G., Stygar W.A., and Vesey R.A. // Phys. Plasmas. 2015. V. 22. P. 056306. https://doi.org/10.1063/1.4919394
  10. Grabovskii E.V., Levashov P.R., Oleinik G.M., Olson C.L., Sasorov P.V., Smirnov V.P., Tkachenko S.I., and Khishchenko K.V. // Plasma Phys. Reps. 2006. V. 32. P. 718. https://doi.org/10.1134/S1063780X06090029
  11. Awe T.J., Peterson K.J., Yu E.P., McBride R.D., Sinars D.B., Gomez M.R., Jennings C.A., Martin M.R., Rosenthal S.E., Schroen D.G., Sefkow A.B., Slutz S.A., Tomlinson K., and Vesey R.A. // Phys. Rev. Lett. 2016. V. 116. P. 065001. https://doi.org/10.1103/PhysRevLett.116.065001
  12. Baksht R.B., Rousskikh A.G., Zhigalin A.S., Oreshkin V.I., and Artyomov A.P. // Phys. Plasmas. 2015. V. 22. P. 103521. https://doi.org/10.1063/1.4934925
  13. Steiner A.M. The electrothermal instability on pulsed power ablations of thin foils. Dissertation. Nuclear Engineering and Radiological Sciences in the University of Michigan. 2016. https://deepblue.lib.umich.edu/handle/2027.42/135827
  14. Steiner A.M., Campbell P.C., Yager-Elorriaga D.A., Cochrane K.R., Mattsson T.R., Jordan N.M., McBride R.D., Lau Y.Y., and Gilgenbach R.M. // Phys. Plasmas. 2018. V. 25. P. 032701. https://doi.org/10.1063/1.5012891
  15. Shelkovenko T.A., Pikuz S.A., Tilikin I.N., Mingaleev A.R., Atoyan L., and Hammer D.A. // Plasma Phys. Reps. 2018. V. 44. P. 236. https://doi.org/10.1134/S1063780X18020113
  16. Wang G., Xiao D., Dan J., Zhang Ya., Ding N., Huang X., Wang X., Sun S., Xue Ch., and Shu X. // Chinese Physics B. 2019. V. 28. P. 025203. https://doi.org/10.1088/1674-1056/28/2/025203
  17. Shelkovenko T.A., Tilikin I.N., Pikuz S.A., Mingaleev A.R., Romanova V.M., and Hammer D.A. // J. Applied Phys. 2020. V. 128. P. 205902 https://doi.org/10.1063/5.0019330
  18. Baksht R.B., Zhigalin A.S., Rousskikh A.G., and Oreshkin V.I. // Physics of Plasmas. 2020. V. 27. P. 043510. https://doi.org/10.1063/1.5139083
  19. Shelkovenko T.A., Tilikin I.N., Pikuz S.A., Mingaleev A.R., Romanova V.M., Atoyan L., and Hammer D.A. // Matter Radiation Extremes. 2022. V. 7. P. 055901. https://doi.org/10.1063/5.0098333
  20. Tilikin I.N., Shelkovenko T.A., Pikuz S.A., Oginov A.V., Mingaleev A.R., Romanova V.M., and Ter-Oganesyan A.E. // J. Applied Phys. 2023. V. 134. P. 033302. https://doi.org/10.1063/5.0153853
  21. Luchinsky A.V., Ratakhin N.A., Feduschak V.F., and Shepelev A.N. // Izv. Vyssh. Uchebn. Zaved. Fiz. 1997. V. 40. P. 67.
  22. Petin V.K., Shljakhtun S.V., Oreshkin V.I., and Ratakhin N.A. // Technical Phys. 2008. V. 53. P. 776. https://doi.org/10.1134/S1063784208060170
  23. Artyomov A.P., Zhigalin A.S., Lavrinovich I.V., Oreshkin V.I., Ratakhin N.A., Rousskikh A.G., Fedyunin A.V., Chaikovsky S.A., Erfort A.A., Mitrofanov K.N., Grabovski E.V., Alexandrov V.V., and Smirnov V.P. // Instruments and Experimental Techniques. 2014. V. 57. P. 461. https://doi.org/10.1134/S0020441214040010
  24. Artyomov A.P., Labetskaya N.A., Fedunin A.V., and Chaikovskii S.A. // Bulletin of the Lebedev Physics Institute. 2010. V. 37 (6). P. 31. https://doi.org/10.3103/S1068335610060084
  25. Datsko I.M., Labetskaya N.A., and Van’kevich V.A. // 7th Internat. Congress on Energy Fluxes and Radiation Effects (EFRE), Tomsk, Russia. IEEE Publishing. 2020. P. 209. https://doi.org/10.1109/EFRE47760.2020.9242129
  26. Дацко И.М., Лабецкая Н.А., Чайковский С.А., Ванькевич В.А., Орешкин В.И. // Proceed. 8th Internat. Congress on Energy Fluxes and Radiation Effects / Eds. Sorokin D., Grishkov A. Tomsk: TPU Publishing House, 2022. P. 199. https://doi.org/10.56761/EFRE2022.S2-P-024801
  27. Chaikovsky S.A., Datsko I.M., Labetskaya N.A., Oreshkin E.V., Oreshkin V.I., Ratakhin N.A., Rousskikh A.G., Vankevich V.A., Zhigalin A.S., and Baksht R.B. // Phys. Plasmas. 2022. V. 29. P. 103501. https://doi.org/10.1063/5.0098206
  28. Datsko I.M., Labetskaya N.A., Chaikovsky S.A., and Van’kevich V.A. // 7th Internat. Congress on Energy Fluxes and Radiation Effects (EFRE), Tomsk, Russia. IEEE Publishing. 2020. P. 73. https://doi.org/10.1109/EFRE47760.2020.9242184
  29. Labetskaya N.A., Datsko I.M., Chaikovsky S.A., Vankevich V.A., Oreshkin E.V., and Oreshkin V.I. // J. Phys: Confer. Ser. 2021. V. 2064 P. 012028. https://doi.org/10.1088/1742-6596/2064/1/012028
  30. Oreshkin V.I., Chaikovsky S.A., Datsko I.M., Labetskaya N.A., Mesyats G.A., Oreshkin E.V., Ratakhin N.A., and Rybka D.V. // Phys. Plasmas. 2016. V. 23. P. 122107. https://doi.org/10.1063/1.4971443
  31. Barengolts S.A., Uimanov I.V., Oreshkin V.I., Khishchenko K.V., and Oreshkin E.V. // J. Applied Phys. 2021. V. 129. P. 133301. https://doi.org/10.1063/5.0044303
  32. Chaikovskii S.A., Oreshkin V.I., Labetskaya N.A., Datsko I.M., Rybka D.V., Vankevich V.A., and Ratakhin N.A. // Russian Phys. J. 2019. V. 62. P. 1235. https://doi.org/10.1007/s11182-019-01840-7
  33. Oreshkin V.I., and Chaikovsky S.A. // Phys. Plasmas. 2012. V. 19. P. 022706. https://doi.org/10.1063/1.3683557

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).