USE OF THE TM110 (E110) MODE OF A CYLINDRICAL MICROWAVE RESONATOR FOR ESTIMATION OF PLASMA DENSITY IN A GAS DISCHARGE TUBE

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Traditional microwave resonator methods for plasma diagnostics face fundamental limitations at high plasma densities (ne > 1011 cm-3) due to the response nonlinearity and resonant peak broadening. The search for alternative approaches that provide accurate measurements over a wide range remains a topical issue. In this work, the feasibility of using the TM110 (E110) mode of a cylindrical resonator (radius R = 45 mm, length H = 30 mm) to measure the electron density in a gas-discharge plasma excited by a surface electromagnetic wave is studied experimentally and numerically. It is found that the coupling coefficient Cv for the TM110 mode remains constant in the range ne = 1011–1012 cm-3, ensuring a linear dependence of the resonant frequency shift on the plasma density. The TM110 mode demonstrates resistance to the resonant peak degradation at high plasma densities ne, in contrast to the TM010 mode, where the signal suppression was observed already at ne ≈ 3·1011 cm-3. The obtained measurement results are in good agreement with the results of plasma density measurements using the transmitted wave method and the integrated plasma luminosity, as well as with literature data. The proposed modification of the method is suitable for noninvasive diagnostics of the longitudinal electron density distribution of gas discharge plasma, including plasma antennas.

Авторлар туралы

V. Stepin

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: vjacheslav-stepin@rambler.ru
Moscow, Russia

V. Zhukov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Moscow, Russia

S. Andreev

Prokhorov General Physics Institute of the Russian Academy of Sciences

Moscow, Russia

D. Karfidov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Moscow, Russia

M. Usachonak

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus

Minsk, Belarus

A. Gaidash

MIREA - Russian Technological University

Moscow, Russia

S. Zamuruev

MIREA - Russian Technological University

Moscow, Russia

N. Bogachev

Prokhorov General Physics Institute of the Russian Academy of Sciences; MIREA - Russian Technological University

Moscow, Russia

Әдебиет тізімі

  1. Heald M.A., Wharton C.B., Furth H.P. Plasma diagnostics with microwaves. New York: Wiley John Wiley & Sons Inc.; 1965. 452 p.
  2. Голант В.Е. Сверхвысокочастотные методы исследования плазмы. М.: Наука; 1968. 327 с.
  3. Thomassen K.I. Microwave plasma density measurements // Journal of Applied Physics. 1965. V. 36. № 11. P. 3642–3644. https://doi.org/10.1063/1.1703058
  4. Wellenstein H.F., Frommhold L., and Robertson W.W. Calibration procedure to correct for the effects of dielectric containers in microwave plasma density measurements // Journal of Applied Physics. 1972. V. 43. № 9. P. 3716. https://doi.org/10.1063/1.1661796
  5. Смирнов А.С., Фролов К.С. Исследование тлеющего разряда в электроотрицательных газах с помощью открытого СВЧ-резонатора // ЖТФ. 1988. Т. 58. № 10. С. 1878.
  6. Li S., Bosisio R.G. Composite hole conditions on complex permittivity measurements using microwave cavity perturbation techniques // IEEE Transactions on Microwave Theory and Techniques. 1982. V. 30. № 1. P. 100. https://doi.org/10.1109/TMTT.1982.1131024
  7. Li J., Astafiev A.M., Kudryavtsev A.A., Yuan C., Zhou Z., and Wang X. The possibility of measuring electron density of plasma at atmospheric pressure by a microwave cavity resonance spectroscopy // IEEE Transactions on Plasma Science. 2021. V. 49. № 3. P. 1001. https://doi.org/10.1109/TPS.2021.3050110
  8. Sadeghikia F., Dorbin M.R., Rashed Mohassel J.A., and Ja’afar H.B. Measurement of Plasma Parameters Using Stationary Method in Resonant Cavity // 2023 17th European Conference on Antennas and Propagation (EuCAP). 2023. https://doi.org/10.23919/EuCAP57121.2023.10133064
  9. Dorbin M.R., Mohassel J.A.R., Sadeghikia F., and Ja’afar H.B. Determination of the plasma density in a plasma antenna based on image analysis and livpd graphs // IEEE Access. 2023. V. 11. P. 120721–120727. https://doi.org/10.1109/ACCESS.2023.3327179
  10. Усаченок М.С., Акишев Ю.С., Казак А.В., Петряков А.В., Симончик Л.В., Шкурко В.В. Определение плотности электронов в аргоновой струе диэлектрического барьерного разряда с помощью СВЧ волноводного фильтра // ЖТФ. 2023. Т. 93. № 3. С. 350. https://doi.org/10.21883/JTF.2023.03.54845.265-22
  11. Жуков В.И., Карфидов Д.М. Распределение плазмы в столбе СВЧ-разряда низкого давления, поддерживаемого стоячей поверхностной волной // Физика плазмы. 2023. Т. 49. № 8. С. 779. https://doi.org/10.31857/S0367292123600462
  12. Moisan M., Shivarova A., and Trivelpiece A.W. Experimental investigations of the propagation of surface waves along a plasma column // Plasma Physics. 1982. V. 24. № 11. P. 1331. https://doi.org/10.1088/0032-1028/24/11/001

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).