EXPERIMENTAL MODELING OF THE “GLOW” REGION IN RED COLUMNAR SPRITES

Cover Page

Cite item

Full Text

Abstract

The work is devoted to experimental modeling of processes that occur in high-altitude atmospheric discharges called red sprites. Miniature analogs of red columnar sprites are created in low-pressure air, including those with single discharge current pulses. It is shown that the brightly luminous “glow” region of the primary “columns” is due to the transition from the plasma diffuse jet mode initiated by a positive streamer to the quasi-stationary glow discharge mode. The emission spectra from different regions of the discharge system along its longitudinal axis are presented, as well as data on the electron Te, vibrational Tv, rotational Tr and gas Tg temperatures of the discharge plasma in these places. Photographs of the discharge glow are obtained when its mode changes.

About the authors

V. F. Tarasenko

Institute of High Current Electronics Siberian Branch of the Russian Academy of Sciences

Email: VFT@loi.hcei.tsc.ru
Tomsk, Russia

D. A. Sorokin

Institute of High Current Electronics Siberian Branch of the Russian Academy of Sciences

Email: SDmA-70@loi.hcei.tsc.ru
Tomsk, Russia

E. Kh. Baksht

Institute of High Current Electronics Siberian Branch of the Russian Academy of Sciences

Tomsk, Russia

N. P. Vinogradov

Institute of High Current Electronics Siberian Branch of the Russian Academy of Sciences

Tomsk, Russia

V. A. Panarin

Institute of High Current Electronics Siberian Branch of the Russian Academy of Sciences

Tomsk, Russia

V. S. Skakun

Institute of High Current Electronics Siberian Branch of the Russian Academy of Sciences

Tomsk, Russia

References

  1. Wilson C.T.R. // Proc. Phys. Soc. London. 1925. V. 37. 32D. https://doi.org/10.1088/1478-7814/37/1/314
  2. Pasko V.P. // Journal of Geophysical Research. 2010. V. 115. A00E35. https://doi.org/10.1029/2009JA014860
  3. Kuo C.L. The middle atmosphere: Discharge phenomena / Ed. by R. Ghadawala. Shanghai: InTech, 2012.
  4. Surkov V.V., Hayakawa M. // Surveys in Geophysics. 2020. V. 41. No. 5. P. 1101. https://doi.org/10.1007/s10712-020-09597-2
  5. Gordillo-Vа́zquez F.J., Pérez-Invernón F.J. // Atmospheric Research. 2021. V. 252. 105432. https://doi.org/10.1016/j.atmosres.2020.105432
  6. Füllekrug M., Mareev E.A., and Rycroft M.J. (eds.). Sprites, elves and intense lightning discharges, V. 225. Cambridge: Springer Science & Business Media, 2006.
  7. Chern J.L., Hsu R.R., Su H.T., Mende S.B., Fukunishi H., Takahashi Y., and Lee L.C. // Journal of Atmospheric and Solar-Terrestrial Physics. 2003. V. 65. P. 647. https://doi.org/10.1016/S1364-6826(02)00317-6
  8. Sentman D.D., Wescott E.M. // Physics of Plasmas. 1995. V. 2. P. 2514. https://doi.org/10.1063/1.871213
  9. Williams E.R. // Physics Today. 2001. V. 54. P. 41. https://doi.org/10.1063/1.1428435
  10. Franz R.C., Nemzek R.J., and Winckler J.R. // Science. 1990. V. 249. P. 48. https://doi.org/10.1126/science.249.4964.48
  11. Stenbaek-Nielsen H.C., Haaland R., McHarg M.G., Hensley B.A., and Kanmae T. // Journal of Geophysical Research. 2010. V. 115. A00E12. https://doi.org/10.1029/2009JA014543
  12. Sentman D.D., Wescott E.M., Osborne D.L., Hampton D.L., and Heavner M.J. // Geophysical Research Letters. 1995. V. 22. P. 1205. https://doi.org/10.1029/95GL00583
  13. Garipov G.K., Khrenov B.A., Klimov P.A., Klimenko V.V., Mareev E.A., Martines O., Mendoza E., Morozenko V.S., Panasyuk M.I., Park I.H., Ponce E., Rivera L., Salazar H., Tulupov V.I., Vedenkin N.N., and Yashin I.V. // Journal of Geophysical Research: Atmospheres. 2013. V. 118. P. 370. https://doi.org/10.1029/2012JD017501
  14. Jehl A., Farges T., and Blanc E. // Journal of Geophysical Research: Space Physics. 2013. V. 118. P. 454. https://doi.org/10.1029/2012JA018144
  15. Neubert T., Østgaard N., Reglero V., Chanrion O., Oxborrow C.A., Orr A., Tacconi M., Hartnack O., and Bhander D.D. // Space Science Reviews. 2019. V. 215. P. 26. https://doi.org/10.1007/s11214-019-0592-z
  16. Stenbaek-Nielsen H.C., McHarg M.G. // Journal Physics D: Applied Physics. 2008. V. 41. 234009. https://doi.org/10.1088/0022-3727/41/23/234009
  17. Pasko V.P. // Plasma Sources Science and Technology. 20007. V. 16. S13. https://doi.org/10.1088/0963-0252/16/1/S02
  18. Ebert U., Nijdam S., Li C., Luque A., Briels T., and van Veldhuizen E. // Journal of Geophysical Research: Space Physics. 2010. V. 115. A00E43. https://doi.org/10.1029/2009JA014867
  19. Marskar R. // Plasma Sources Science and Technology. 2024. V. 33. 025024. https://doi.org/10.1088/1361-6595/ad29c0
  20. Qin J., Celestin S., Pasko V.P., Cummer S.A., McHarg M.G., and Stenbaek-Nielsen H.C. // Geophysical Research Letters. 2013. V. 40. P. 4777. https://doi.org/10.1002/grl.50910
  21. Malagon-Romero A., Teunissen J., Stenbaek-Nielsen H.C., McHarg M.G., Ebert U., and Luque A. // Geophysical Research Letters. 2020. V. 47. e2019GL085776. https://doi.org/10.1029/2019GL085776
  22. Stenbaek-Nielsen H.C., McHarg M.G., Haaland R., and Luque A. // Journal of Geophysical Research: Atmospheres. 2020. V. 125. e2020JD033170. https://doi.org/10.1029/2020JD033170
  23. Sorokin D.A., Tarasenko V.F., Baksht E.Kh., and Vinogradov N.P. // Physics of Plasmas. 2023. V. 30. 083515. https://doi.org/10.1063/5.0153509
  24. Williams E., Valente M., Gerken E., and Golka R. Sprites, Elves and Intense Lightning Discharges. Dordrecht: Springer, 2006.
  25. McHarg M.G., Stenbaek-Nielsen H.C., and Kammae T. // Geophysical Research Letters. 2007. V. 34. L06804. https://doi.org/10.1029/2006GL027854
  26. Goto Y., Ohba Y., Narita K. // Journal of Atmospheric Electricity. 2007. V. 27. P. 105. https://doi.org/10.1541/jae.27.105
  27. Opaits D.F., Shneider M.N., Howard P.J., Miles R.B., and Milikh G.M. // Geophysical Research Letters. 2010. V. 37. L14801. https://doi.org/10.1029/2010GL043996
  28. Strikovskiy A.V., Korobkov S.V., Gushchin M.E., Evtushenko A.A., Zudin I.Y. // Plasma Physics Reports. 2019. V. 45. P. 527. https://doi.org/10.1134/S1063780X19060102
  29. Sosnin E.A., Naidis G.V., Tarasenko V.F., Skakun V.S., Panarin V.A., Babaeva N.Y., Baksht E.K., and Kuznetsov V.S. // Physics of Plasmas. 2018. V. 25. 083513. https://doi.org/10.1063/1.5038099
  30. Robledo-Martinez A., Garcia-Villarreal A., and Sobral H. // Journal of Geophysical Research: Space Physics. 2017. V. 122. P. 948. https://doi.org/10.1002/2016JA023519
  31. Tarasenko V., Vinogradov N., Baksht E., Sorokin D. // Journal of Atmospheric Science Research. 2022. V. 5. P. 26. https://doi.org/10.30564/jasr.v5i3.4858
  32. Sorokin D.A., Tarasenko V.F., Baksht E.K., and Vinogradov N.P. // European Journal of Environment and Earth Sciences. 2022. V. 3. P. 42. https://doi.org/10.24018/ejgeo.2022.3.6.322
  33. Tarasenko V.F., Vinogradov N.P., Baksht E.Kh., and Pechenitsin D.S. // Plasma Physics Reports. 2024. V. 50. P. 153. https://doi.org/10.1134/S1063780X23601736
  34. Tarasenko V.F., Baksht E.K., Panarin V.A., and Vinogradov N.P. // Plasma Physics Reports. 2023. V. 49. P. 786. https://doi.org/10.1134/S1063780X23700393
  35. Tarasenko V.F., Vinogradov N.P., Panarin V.A., Skakun V.S., Sorokin D.A., and Baksht E.Kh. // Atmospheric and Oceanic Optics. 2024. V. 37. S183. https://doi.org/10.1134/S1024856024701598
  36. Philips D.M. // Journal of Physics D: Applied Physics. 1975. V. 9. P. 507. https://doi.org/10.1088/0022-3727/9/3/017N
  37. Очкин В.Н. Спектроскопия низкотемпературной плазмы. Москва: Физматлит, 2006.
  38. Britun N., Gaillard M., Ricard A., Kim Y.M., Kim K.S., and Han J.G. // Journal of Physics D: Applied Physics. 2007. V. 40. P. 1022. https://doi.org/10.1088/0022-3727/40/4/016
  39. Paris P., Aints M., Valk F., Plank T., Haljaste A., Kozlov K.V., and Wagner H.-E. // Journal of Physics D: Applied Physics. 2005. V. 38. P. 3894. https://doi.org/10.1088/0022-3727/38/21/010
  40. Pancheshnyi S.V., Starikovskaia S.M., and Starikovskii A.Yu. // Chemical Physics. 2000. V. 262. P. 349. https://doi.org/10.1016/S0301-0104(00)00338-4
  41. Hagelaar G.J.M., and Pitchford L.C. // Plasma Sources Science and Technology. 2005. V. 14. P. 722. https://doi.org/10.1088/0963-0252/14/4/011
  42. www.lxcat.net/SIGLO
  43. Morrill J., Bucsela E., Siefring C., Heavner M., Berg S., Moudry D., Slinker S., Fernsler R., Wescott E., Sentman D., and Osborne D. // Geophysical Research Letters 29, 1462 (2002). https://doi.org/10.1029/2001GL014018
  44. Laux C.O. Radiation and Nonequilibrium Collisional-Radiative Models, Physico-Chemical of High Enthalpy and Plasma Flows / Ed. by D. Fletcher, J.-M. Carbonnier, G.S.R. Sarma, T. Magin. Belgium: Rhode Saint Genese, 2002.
  45. Hervig M., Thompson R.E., McHugh M., Gordley L.L., Russell III J.M., and Summers M.E. // Geophysical Research. Letters. 2001. V. 28. P. 971. https://doi.org/10.1029/2000GL012104
  46. Zabotin N.A., Wright J.W. // Geophysical Research. Letters. 2011. V. 28. P. 2593. https://doi.org/10.1029/2000GL012699
  47. Tarasenko V.F. // Plasma Sources Science and Technology. 2020. V. 29. 034001. https://doi.org/10.1088/1361-6595/ab5c57
  48. Тарасенко В.Ф., Панарин В.А., Скакун В.С., Виноградов Н.П. // Письма в ЖТФ. 2025. Т. 51. С. 41. https://doi.org/10.61011/PJTF.2025.06.59928.20152

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).