TECHNIQUE FOR PLASMA DIAGNOSTICS BASED ON RESONANCE LINES OF NE-LIKE KR XXVII ION AND ITS SATELLITES

Cover Page

Cite item

Full Text

Abstract

The X-ray spectral diagnostics of laser plasma of heavy elements that does not contain few-electron ions is considered. The X-ray spectral method for measuring the temperature and density of laser plasma of krypton cluster targets is developed. It is based on analyzing resonance spectral lines of Ne-like krypton ions Kr XXVII and their two-electron satellites arising due to transitions in Na- and Mg-like Kr XXVI and Kr XXV ions. Using the results of the calculations performed, it is possible to determine the ion density of plasma in the range of 1017–1021 cm−3 and the electron temperature in the range of 200–1000 eV. It is shown that one spectrometer with the spherically curved quartz crystal, which has a sufficiently high spectral and spatial resolution, can be used for experimental recording all required diagnostic spectral lines of krypton ions.

About the authors

I. Yu. Skobelev

Joint Institute for High Temperatures of the Russian Academy of Sciences; National Research Nuclear University “MEPhI”

Email: igor.skobelev@gmail.com
Moscow, Russia; Moscow, Russia

R. K. Kulikov

Joint Institute for High Temperatures of the Russian Academy of Sciences; National Research Nuclear University “MEPhI”

Email: roma.st.2001@gmail.com
Moscow, Russia; Moscow, Russia

S. N. Ryazantsev

Joint Institute for High Temperatures of the Russian Academy of Sciences; National Research Nuclear University “MEPhI”

Email: ryazantsev@ihed.ras.ru
Moscow, Russia; Moscow, Russia

References

  1. Fortov V.E. and Morfill G.E. Complex and Dusty Plasmas: From Laboratory to Space. CRC Press, 2010.
  2. Fennel T., Meiwes-Broer K.-H., Tiggesb¨аumker J., Reinhard P.-G., Dinh P.M. and Suraud E. // Rev. Mod. Phys. 2010. V. 82. 1793.
  3. Ditmire T., Zweiback J., Yanovsky V.P., Cowan T.E., Hays G. and Wharton K.B. // Nature. 1999. V. 398. P. 489
  4. Grillon G., Balcou Ph., Chambaret J.-P., Hulin D., Martino J., Moustaizis S., Notebaert L., Pittman M., Pussieux Th., Rousse A., Rousseau J-Ph., Sebban S., Sublemontier O. and Schmid M. // Phys. Rev. Lett. 2002. V. 89. 065005.
  5. Lu H.Y., Liu J.S., Wang C., Wang W.T., Zhou Z.L., Deng A.H., Xia C.Q., Xu Y., Lu X.M., Jiang Y.H., Leng Y.X., Liang X.Y., Ni G.Q., Li R.X. and Xu Z.Z. // Phys. Rev A. 2009. 80. 051201(R)
  6. Last I., Ron S. and Jortner J. // Phys. Rev. A. 2011. V. 83. 043202. https://doi.org/10.1103/PHYSREVA.83.043202
  7. Ditmire T., Tisch J.W.G., Springate E., Mason M.B., Hay N., Smith R.A., Marangos J. and Hutchinson M.H.R. // Nature. 1997. V. 386. P. 54. https://doi.org/10.1038/386054a0
  8. Tajima T., Kishimoto Y. and Downer M.C. // Phys. Of Plasmas. 1999. V. 6. P. 3759.
  9. Sakabe S., Shimizu S., Hashida M., Sato F., Tsuyukushi T., Nishihara K., Okihara S., Kagawa T., Izawa Y., Imasaki K. and Iida T. // Phys. Rev. A. 2004. V. 69. 023203. http://dx.doi.org/10.1103/PhysRevA.69.023203
  10. Zhang L., Chen L.-M., Wang W.-M., Yan W.-Ch., Yuan D.-W., Mao J.-Y., Wang Z.-H., Liu Ch., Shen Z.-W., Faenov A., Pikuz T., Li D.-Z., Li Y.-T., Dong Q.-L., Lu X., Ma J.-L., Wei Z.-Y., Sheng Z.-M., Zhang J. // Appl. Phys. Lett. 2012. V. 100. 014104. https://doi.org/10.1063/1.3673911
  11. Hah J., Nees J.A., Hammig M.D., Krushelnick K. and Thomas A.G.R. // Plasma Phys. Control. Fusion. 2018. V. 60. 054011.
  12. McPherson A., Thompson B.D., Borisov A.B., Boyer K. and Rhodes C.K. // Nature. 1994. V. 370. P. 631. https://doi.org/10.1038/370631a0
  13. Donnelly T.D., Ditmire T., Neuman K., Perry M.D. and Falcone R.W. // Phys. Rev. Lett. 1996. V. 76. P. 2472. https://doi.org/10.1103/PhysRevLett.76.2472
  14. Chu H.-H., Tsai H.-E., Chou M.-C., Yang L.-S., Lin J.-Y., Lee C.-H., Wang J. and Chen S.-Y. // Phys. Rev. A. 2005. V. 71. 061804(R). https://doi.org/10.1103/PhysRevA.71.061804
  15. Namba S., Hasegawa N., Nagashima K., Kawachi T., Kishimoto M., Sukegawa K. and Takiyama K. // Phys. Rev. A. 2006. V. 73. 013205.
  16. Kugland N.L., Constantin C.G., Neumayer P., Chung H.-K., Collette A., Dewald E.L., Froula D.H., Glenzer S.H., Kemp A., Kritcher A.L., Ross J.S., Niemann C. // Appl. Phys. Lett. 2008. V. 92. 241504. https://doi.org/10.1063/1.2945795
  17. Chen L.M., Liu F., Wang W.M., Kando M., Mao J.Y., Zhang L., Ma J.L., Li Y.T., Bulanov S.V., Tajima T. // Phys. Rev. Lett. 2010. V. 104. 215004.
  18. Hayashi Y., Pirozhkov A.S., Kando M., Fukuda Y., Faenov A., Kawase K., Pikuz T., Nakamura T., Kiriyama H., Okada H. and Bulanov S.V. // Opt. Lett. 2011. V. 36(9). P. 1614.
  19. Zhang L., Chen L.-M., Yuan D.-W., Yan W.-Ch., Wang Z.-H., Liu Ch., Shen Z.-W., Faenov A., Pikuz T., Skobelev I., Gasilov V., Boldarev A., Mao J.-Y., Li Y.-T., Dong Q.-L., Lu X., Ma J.-L., Wang W.-M., Sheng Z.-M. and Zhang J. // Opt. Express. 2011. V. 19(25). 25812. https://doi.org/10.1364/OE.19.025812
  20. Chen L.M., Yan W.C., Li D.Z., Hu Z.D., Zhang L., Wang W.M., Hafz N., Mao J.Y., Huang K., Ma Y., Zhao J.R., Ma J.L., Li Y.T., Lu X., Sheng Z.M., Wei Z.Y., Gao J. and Zhang J. // Scientific Reports. 2013. V. 3. P. 1912
  21. Le´cz Zs., Andreev A. and Hafz N. // Phys. Rev. E. 2020. V. 102. 053205.
  22. Бойко В.А., Виноградов А.В., Пикуз С.А., Скобелев И.Ю., Фаенов А.Я. Рентгеновская спектроскопия лазерной плазмы. М.: ВИНИТИ, Итоги науки и техники. Радиотехника, 1980. Т. 27.
  23. Skobelev I.Yu., Faenov A.Ya., Magunov A.I., Pikuz T.A., Boldarev A.S., Gasilov V.A., Abdallach J., Jr., Junkel-Vives G.C., Auguste T., Dobosz S., d’Oliveira P., Hulin S., Monot P., Blasco F., Dorchies F., Caillaud T., Bonte C., Stenz C., Salin F., Loboda P.A., Litvinenko I.A., Popova V.V., Baidin G.V. and Sharkov B.Yu. // J. Exp. Theor. Phys. 2002. V. 94. P. 966. https://doi.org/10.1134/1.1484990
  24. Jinno S., Fukuda Y., Sakaki H., Yogo A., Kanasaki M., Kondo K., Faenov A.Ya., Skobelev I.Yu., Pikuz T.A., Boldarev A.S. and Gasilov V.A. // Opt. Express. 2013. V. 21. 20656. https://doi.org/10.1364/OE.21.020656
  25. Бойко В.А., Пальчиков В.Г., Скобелев И.Ю. и Фаенов А.Я., Рентгеновская спектроскопия многозарядных ионов. М.: Энергоатомиздат, 1988
  26. Khakhalin S.Ya., Dyakin V.M., Faenov A.Ya., Fiedorowicz H., Bartnik A., Parys P., Osterheld A.L., Nilsen J. // J. Opt. Soc. Amer. 1995. B(12). 1203.
  27. http://spectr-w3.snz.ru/
  28. Skobelev I.Yu., Ryazantsev S.N., Kulikov R.K. et al. // Photonics. 2023. V. 10(11). P. 1250
  29. Gu M.F. // Canadian Journal of Physics. 2008. V. 86(5). 675
  30. Faenov A.Ya., Pikuz S.A., Erko A.I., Bryunetkin B.A., Dyakin V.M., Ivanenkov G.V., Mingaleev A.R., Pikuz T.A., Romanova V.M. and Shelkovenko T.A. // Physica Scripta. 1994. V. 50(4). P. 333

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».