Conceptual Project for Diagnostics of Erosion of the First Wall and Divertor of the Tokamak with Reactor Technologies TRT

Cover Page

Cite item

Full Text

Abstract

A conceptual design for diagnosing erosion of the first wall and divertor plates of a tokamak with reactor technologies TRT is proposed. The principles of constructing a diagnostic complex based on the following systems are developed: laser radar, dual-wavelength digital holographic interferometry and active laser IR thermography. An optical scheme is developed for combining the optical paths to input laser radiation and collect scattered light from diagnostic systems. To view the maximum area of the first wall, a scheme for optical scanning of the surface of the first wall and divertor is proposed. Based on optical simulation, the spatial distribution of the power density and phase of interferometry laser radiation in the illuminated region of the first wall is constructed, and the dimensions of the light fields and power density for IR thermography and laser radar diagnostics are determined. An image formation scheme is proposed and the spatial resolution is determined for interferometry and IR thermography methods. The light scattering function on models of the ITER divertor cladding is studied experimentally. The energy of the collected signal is calculated on the basis on the experimental data for all three diagnostic methods and the requirements for the diagnostic equipment are formulated.

About the authors

A. G. Razdobarin

Ioffe Institute, Russian Academy of Sciences; Spectral-Tech; Immanuel Kant Baltic Federal University

Author for correspondence.
Email: Aleksey.Razdobarin@mail.ioffe.ru
Russian Federation, St. Petersburg, 194021; St. Petersburg, 194223; Kaliningrad, 236041

Y. R. Shubin

Ioffe Institute, Russian Academy of Sciences

Email: Aleksey.Razdobarin@mail.ioffe.ru
Russian Federation, St. Petersburg, 194021

A. A. Belokur

Ioffe Institute, Russian Academy of Sciences

Email: Aleksey.Razdobarin@mail.ioffe.ru
Russian Federation, St. Petersburg, 194021

D. L. Bogachev

Spectral-Tech

Email: Aleksey.Razdobarin@mail.ioffe.ru
Russian Federation, St. Petersburg, 194223

D. I. Elets

Ioffe Institute, Russian Academy of Sciences; Spectral-Tech; Immanuel Kant Baltic Federal University

Email: Aleksey.Razdobarin@mail.ioffe.ru
Russian Federation, St. Petersburg, 194021; St. Petersburg, 194223; Kaliningrad, 236041

O. S. Medvedev

Ioffe Institute, Russian Academy of Sciences; Spectral-Tech; Immanuel Kant Baltic Federal University

Email: Aleksey.Razdobarin@mail.ioffe.ru
Russian Federation, St. Petersburg, 194021; St. Petersburg, 194223; Kaliningrad, 236041

E. E. Mukhin

Ioffe Institute, Russian Academy of Sciences

Email: Aleksey.Razdobarin@mail.ioffe.ru
Russian Federation, St. Petersburg, 194021

L. A. Snigirev

Ioffe Institute, Russian Academy of Sciences

Email: Aleksey.Razdobarin@mail.ioffe.ru
Russian Federation, St. Petersburg, 194021

I. V. Alekseenko

Immanuel Kant Baltic Federal University

Email: Aleksey.Razdobarin@mail.ioffe.ru
Russian Federation, Kaliningrad, 236041

References

  1. De Temmerman G., Hirai T., Pitts R. A. // Plasma Phys. Control. Fusion. 2018. V. 60, P. 044018. https://doi.org/10.1088/1361—6587/aaaf62
  2. Schweer B., Huber A., Sergienko G., Philipps V., Irrek F., Esser H. G., Samm U., Kempenaars M., Stamp M., Gowers C., Richards D. // J. Nucl. Mater. 2005. V. 337—339. P. 570. https://doi.org/10.1016/j.jnucmat.2004.10.156
  3. Pintsuk G., Bobin-Vastra I., Constans S., Gavila P., Rödig M., Riccardi B. // Fusion Eng. Des. 2013. V. 88. P. 1858. https://doi.org/10.1016/j.fusengdes.2013.05.091
  4. Кукушкин А. С., Пшенов А. А. // Физика плазмы. 2021. Т. 47. № 12. С. 1123.
  5. Будаев В.П. // ВАНТ. Термоядерный синтез. 2015. Т. 38. № 4. С. 5.
  6. Autricque A., Peillon S., Gensdarmes F., Sow M., Fedorczak N., Roche H., Pluchery O., Grisolia C. // Nucl. Mater. Energy. 2018. V. 17. P. 284. https://doi.org/10.1016/j.nme.2018.11.013
  7. Cohen R., Ryutov D. // Physics of Plasmas. 1998. V. 5. P. 2194. https://doi.org/10.1063/1.872926
  8. Reichle R., Andrew P., Bates P., Bede O., Casal N., Choi C. H., Barnsley R., Damiani C., Bertalot L., Dubus G., Ferreol J., Jagannathan G., Kocan M., Leipold F., Lisgo S. W., Martin V., Palmer J., Pearce R., Philipps V., Pitts R. A., Passedat G., Puiu A., Suarez A., Shigin P., Shu W., Vayakis G., Veshchev E., Walsh M. // Journal of Nuclear Materials, 2015, V. 463, P. 180. https://doi.org/10.1016/j.jnucmat.2015.01.039
  9. Pedrini G., Calabuig A., Jagannathan G., Kempenaars M., Vayakis G., Osten W. // Applied Optics. 2019. V. 58. Iss. 5. P. A147. https://doi.org/10.1364/AO.58.00A147
  10. Li Т., Almond D. P. and Rees D. A.S. // Meas. Sci. Technol. 2011, 22, 035701. https://doi.org/ 10.1088/0957-0233/22/3/035701
  11. Courtois X., Sortais C., Melyukov D., Gardarein J. L., Semerok A., Grisolia Ch. // Fusion Engineering and Design. 2011. V. 86, P. 1714. https://doi.org/10.1016/j.fusengdes.2011.04.071
  12. Cook R. L., Torrance K. E. // ACM SIGGRAPH Graphics. 1981. V. 15. Issue 3. P. 307. https://doi.org/10.1145/965161.806819
  13. Beckmann P., Spizzichino A. The scattering of electromagnetic waves from rough surfaces. Norwood MA, Artech House Inc., 1987.
  14. Schlick C. // Computer graphics forum. 1994. V. 13. № 3. P. 233. https://doi.org/10.1111/1467-8659.1330233
  15. Werner W. S. M., Glantschnig K., Ambrosch-Draxl C. //Journal of Physical and Chemical Reference Data. 2009. V. 38. № 4. P. 1013. doi: 10.1063/1.3243762
  16. Litnovsky A., Wienhold P., Philipps V., Sergienko G., Schmitz O., Kirschner A., Kreter A., Droste S., Samm U., Mertens Ph., Donné A. H., TEXTOR Team, Rudakov D., Allen S., Boivin R., McLean A., Stangeby P., West W., Wong C., DIII-D Team, Romanyuk A. // J. Nucl. Mat. 2007. V. 363—365. P. 1395.
  17. http://www.lightsensing.com/
  18. Бондаренко А. В., Высоцкий Д. В., Тугаринов С. Н. // ВАНТ. Термоядерный синтез. 2018. Т. 41. № 1. С. 18.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».