Method of controlling the slipping of a wheel propeller of automobile and tractor

Cover Page

Cite item

Full Text

Abstract

An increase in the slipping of a wheel propeller leads both to the energy loss and, up to a certain limit, the traction force increase. In this regard, in order to reduce energy losses for the movement of the vehicle, it is necessary to limit wheel slip at a level sufficient to create the required traction. Most of the existing algorithms aimed at implementing this constraint require information about the vehicle's linear speed. However, measuring the latter with a given accuracy outside laboratory conditions is difficult, which in some cases leads to a malfunction of the control algorithm. Therefore, it is relevant to develop a control method for the traction control system; in particular, for the case of acceleration, which will make it possible to estimate and limit wheel slip within specified limits with unknown characteristics of the supporting surface and the vehicle speed.

The article is devoted to the development of a method for assessing and limiting slipping of a wheeled engine at a level sufficient to realize the required tractive forces without using data on the vehicle's linear speed and adhesion properties of the supporting surface.

The article describes the mathematical model of the dynamics of the rectilinear movement of the “quarter” of the vehicle on a solid flat horizontal support surface. Through virtual experiments simulating the acceleration of a “quarter” of the vehicle with low slip, there was established a relationship between the traction force on the wheel axle and the kinematic parameters of the rotational motion, which are measurable and can be controlled during the movement of the vehicle, for example, using dynamometric wheels. On the basis of the obtained criterion, a regulator was developed to limit wheel slip during vehicle acceleration. The effectiveness of the developed regulator is proved by mathematical modeling of the acceleration of a “quarter” of the vehicle with different intensities on two types of supporting surfaces. It is also substantiated analytically provided that the wheel slip is constant within the measurement interval.

The paper presents an approach to assessing and limiting the slip of the wheels of a vehicle during acceleration using a regulator based on fuzzy logic. A theoretical justification of the proposed method is given. It does not require information about the linear speed of the vehicle and the adhesion properties of a wheel with a supporting surface.

An algorithm for the operation of the traction control system was developed. It allows to limit wheel slip at a given level while maintaining a sufficient margin of traction, which leads to a decrease in tire wear, a decrease in the likelihood of loss of mobility and an increase in the energy efficiency of the vehicle.

About the authors

Ruslan L. Gazizullin

Bauman Moscow State Technical University

Email: rlgazizullin@bmstu.ru
Russian Federation, Moscow

Kh. Chzhen

Bauman Moscow State Technical University

Email: zhypro@yandex.ru
Russian Federation, Moscow

George O. Kotiyev

Bauman Moscow State Technical University

Email: kotiev_go@bmstu.ru

DrSc in Engineering

Russian Federation, Moscow

Boris B. Kositsyn

Bauman Moscow State Technical University

Author for correspondence.
Email: kositsyn_b@bmstu.ru

DrSc in Engineering

Russian Federation, Moscow

References

  1. Global Greenhouse Gas Emissions Data: sayt. URL: https://www.epa.gov/ghgemissions/global-green- house-gas-emissions-data (data obrashcheniya 19.07.2021).
  2. Buzunov N.V., Pirozhkov R.D., Kartashov A.B., Dubinkin D.M., Efremenkov A.B. Simulation of operation of a sequential hybrid drive of a haul truck with a traction battery and a bilateral DC-to-DC converter // III International Scientific and Practical Conference on Innovations in Engineering and Technology-2020. Veliky Novgorod, 2020. P. 012−017. doi: 10.1088/1757-899X/939/1/012017
  3. Kartashov A.B., Skotnikov G.I. Simulation based feasibility confirmation of using hybrid powertrain system in unmanned dump trucks // International Automobile Scientific Forum (IASF-2019) “Technologies and Components of Land Intelligent Transport Systems” 16–18 October 2019 Moscow, Russian Federation. doi: 10.1088/1757-899X/819/1/012010
  4. Chudakov O.I, Gorelov V.A, Gartfelder V.A. and Sekletina L.S. Mathematical model of curvilinear motion of an active road train with electromechanical transmission // 2019 International Automobile Scientific Forum on Technologies and Components of Land Intelligent Transport Systems, IASF 2019. Moscow, 2019. doi: 10.1088/1757-899X/819/1/012001
  5. Gorelov V.A., Komissarov A.I., Sekletina L.S., Gartfelder V.A. A control algorithm for simulation of real-world operating conditions for the drivetrain of an all-wheel drive vehicle with individually driven wheels on a chassis dynamometer // Cogent Engineering – 2020. doi: 10.1080/23311916.2020.1737449
  6. Chudakov O., Gorelov V. and Padalkin B. Mathematical Modeling of a Linear Motion on a Deformable Bearing Surface of a Saddle-Type Road Train with Active Semi-Trailer Element // 2019 Conference on Design Technologies for Wheeled and Tracked Vehicles, MMBC. Moscow, 2019. doi: 10.1088/1757-899X/820/1/012009
  7. Zhukovsky N.E., 1937. Theory of a Device Designed by Dipl.-Eng. Romeiko-Gurko. Also published in Prof Zhu-kovsky’s Complete Works, Vol. 8, Moscow, Russia, 1905 (in Russian).
  8. Chudakov E.A., 1946. Rolling of Automobile Wheel. Mashgiz Publishing House, Moscow, Russia.
  9. Petrushov V.A., Moskovkin V.V., Yevgrafov A.N. Moshchnostnoy balans avtomobilya [Power balance of the vehicle]. Pod obshch. red. V.A. Petrushova. Moscow: Mashinostroyeniye Publ., 1984. 160 p.
  10. Petrushov V.A. Soprotivleniye kacheniyu avtomobiley i avtopoyezdov [Rolling resistance of vehicles and road trains]. Moscow, «MashinostroyeniYE» Publ., 1975. 225 p.
  11. Knoroz V.I., Klennikov Ye.V., Petrov I.P., Shelukhin A.S., Yur’yev Yu.M. Rabota avtomobil’noy shiny [Vehicle tire operation]. Pod. red. V.I. Knoroza. Moscow, «TransporT» Publ., 1976. 238 p.
  12. Knoroz V.I., Klennikov Ye.V. Shiny i kolesa [Tires and wheels]. Moscow, «MashinostroyeniYE» Publ., 1975 g. 184 p.
  13. Pirkovskiy Yu.V., Shukhman S.B. Teoriya dvizheniya polnoprivodnogo avtomobilya (prikladn·yye voprosy optimizatsii konstruktsii shassi) [All-wheel drive vehicle motion theory (applied questions of chassis design optimization)]. Moscow: YUPITI-DANA Publ., 2001; Elit-200, 2001. 230 p. ISBN 5-94126-666-1.
  14. Shukhman S.B., Solov’yev V.I., Prochko Ye.I. Teoriya silovogo privoda koles avtomobiley vysokoy prokhodimosti [The theory of the power drive of the wheels of cross-country vehicles]. Pod obshchey redaktsiyey d.t.n., prof. S.B. Shukhmana. Moscow: Agrobiznestsentr Publ., 2007. 336 p. ISBN 978-5-902792-15-4.
  15. Bekker M.G. Vvedeniye v teoriyu sistem mestnost’-mashina [An introduction to terrain-machine systems theory]. Moscow, «MashinostroyeniYE» Publ., 1973. 520 p.
  16. Wong J. Teoriya nazemnykh transportnykh sredstv [Theory of ground vehicles]: Per. s. angl. Moscow: Mashinostroyeniye Publ., 1982. 284 p.
  17. Hu C. Analytical modeling and DEM analysis of soil-wheel interaction under cornering and skidding conditions in off-road vehicles / Hu C., Gao J., Song X., Zhang M., Tan X. // AIP Advances. 2021. (in Russ.). doi: 10.1063/5.0057046
  18. Ravula P. Discrete element method-based studies on dynamic interactions of a lugged wheel with granular media / Ravula P., Acar G., Balachandar B. // Journal of Terramechanics. 2021. No 94. P. 49−62.
  19. Vantsevich V.V. UGV with a distributed electric driveline: Controlling for maximum slip energy efficiency on stochastic terrain / M.A. Salama, V.V. Vantsevich, T.R. Way, D.J. Gorsich // Journal of Terramechanics. 2018. No 79. P. 41−57.
  20. Gorelov V.A., Kotiyev G.O., Miroshnichenko A.V. Development of a control law for the individual drive of the propellers of a multi-axle wheeled vehicle. Izvestiya vuzov. Mashinostroyeniye. 2012. No 1, pp. 49–59 (in Russ.).
  21. Yamakawa J., Watanabe K., 2006. A method of optimal wheel torque determination for independent wheel drive vehicles. J. Terramech. 43, 269–285.
  22. Yamakawa J., Kojima A., Watanabe K., 2007. A method of torque control for independent wheel drive vehicles on rough terrain. J. Terramech. 44, 371–381.
  23. Yan C., Junmin W., 2011. An adaptive energy-efficient control allocation on planar motion control of electric ground vehicles. In: 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 8062–8067.
  24. Kositsyn B.B., Zheng H., Gazizullin R.L. Control and measuring modernization systems of the Soil Channel test bench and the development of a wheel motion mathematical model in stand conditions. Trudy NAMI. 2021. No 1(284), pp. 25–34 (in Russ.). doi: 10.51187/0135-3152-2021-1-25-34
  25. Kositsyn B.B. Metod opredeleniya energoeffektivnogo zakona dvizheniya elektrobusa po gorodskomu marshrutu: dissertatsiya ... kandidata tekhnicheskikh nauk [Method for determining the energy efficient law of movement of an electric bus along an urban route: Dissertation for Degree of PhD in Engineering]: 05.05.03; [Mesto zashchity: FGBOU VO «Moskovskiy gosudarstvennyy tekhnicheskiy universitet imeni N.E. Baumana (natsional’nyy issledovatel’skiy universitet)»]. Moscow, 2018. 166 p.
  26. Larin V.V. Teoriya dvizheniya polnoprivodnykh kolesnykh mashin [Theory of motion of four-wheel drive wheeled vehicles]: uchebnik. Moscow: Izd-vo MGTU im. N. E. Bau-mana Publ., 2010. 391 p.
  27. Janosi Z., Hanamoto B. The analytical determination of drawbar pull as a function of slip for tracked vehicles in deformable soil // Intern. Conf. on the mechanics of soil-vehicles. Tyrin. 1961. Report 44. P. 331–359.
  28. Rozhdestvenskiy Yu.L., Mashkov K.Yu. The formation of reactions when an elastic wheel rolls on a non-deformable base. Trudy MVTU. 1982. No 390, pp. 56–64 (in Russ.).
  29. Platonov V.F., Leiashvili G.R. Gusenichn·yye i kolesn·yye transportno-tyagov·yye mashiny [Tracked and wheeled transport and traction vehicles]. Moscow: Mashinostroyeniye Publ., 1986. 296 p.
  30. Platonov V.F. Polnoprivodn·yye avtomobili [4 wheel drive vehicles]. 2-e izd., pererab. i dop. Moscow: Mashinostroyeniye Publ., 1989. 312 p.
  31. Armaderov R.G., Bocharov N.F., Filyushkin A.V. Dvizhiteli transportnykh sredstv vysokoy prokhodimosti [Propellers of vehicles of high cross-country ability]: monografiya. Moscow: Transport Publ., 1972. 104 p.
  32. Bocharov N.F., Gusev V.I., Semenov V.M. [i dr.] Transportn·yye sredstva na vysokoelastichnykh dvizhitelyakh: monografiya [Highly elastic propulsion vehicles]. Moscow: Mashinostroyeniye Publ., 1974. 208 p.
  33. Smirnov G.A. Teoriya dvizheniya kolesnykh mashin [Theory of motion of wheeled vehicles]: Ucheb. dlya studentov mashinostroit. spets. vuzov. 2-e izd., dop. i pererab. Moscow: Mashinostroyeniye Publ., 1990. 352 p.
  34. Pegat A., Tyumentsev Yu.V., Podvesovskiy A.G. Nechetkoye modelirovaniye i upravleniye: monografiya [Fuzzy modeling and control: monograph]. Moscow: Binom. Laboratoriya znaniy Publ., 2023. 804 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. “Quarter” of the vehicle layout

Download (66KB)
3. Fig. 2. The calculated scheme of acceleration of a “quarter” of the vehicle on a non-deformable support surface when loosening the bonds and replacing them with forces

Download (55KB)
4. Fig. 3. Mechanical characteristic of the electric motor Mk(ω, h)

Download (61KB)
5. Fig. 4. The dependence of the longitudinal force coefficient on the slip coefficient

Download (23KB)
6. Fig. 5. The dependence of the longitudinal force coefficient on the specific circumferential force

Download (44KB)
7. Fig. 6. The scheme for correcting the control action set by the driver, the fuzzy controller on S.

Download (41KB)
8. Fig. 7. Input membership functions s′ – s

Download (55KB)
9. Fig. 8. Output membership functions hp

Download (58KB)
10. Fig. 9. The law of variation of the power plant control parameter, determined t1 and set by the driver

Download (15KB)
11. Fig. 10. The graphs of changes in various parameters of wheel movement during acceleration: a) longitudinal force, c) angular acceleration, e) slip coefficient on supporting surface 1 and b), d), f) on supporting surface 2

Download (105KB)
12. Fig. 11. The graphs of changes in motion parameters from time to time during acceleration with different intensities on supporting surface 1

Download (39KB)
13. Fig. 12. The graphs of changes in motion parameters from time to time during acceleration with different intensities on supporting surface 2

Download (74KB)
14. Fig. 13. The graph of the dependence of the slip coefficient on Px/ according to the expression (10)

Download (34KB)
15. Fig. 14. Input membership functions

Download (59KB)
16. Fig. 15. Output membership functions hp

Download (58KB)
17. Fig. 16. The scheme for correcting the control action set by the driver, the fuzzy controller on

Download (40KB)
18. Fig. 17. The graphs of changes in the parameters of wheel movement during acceleration with different intensities with a controller on from time: a) corrected control action, c), e) slip coefficient for supporting surface 1 and b), d), f) – for supporting surface 2, respectively

Download (129KB)

Copyright (c) 2021 Gazizullin R.L., Chzhen K., Kotiyev G.O., Kositsyn B.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».