Transient characteristics of a wheeled machine with a vibration-protective seat

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: Shock and vibration loads caused by the microrelief of the supporting surface negatively affect both the health of operators of ground transportation and technological machines and the quality of work performed due to the deterioration of reactions and attentiveness. Vibration-protective seat systems are an effective means of mitigating dynamic effects on operators. Development of vibration-protective systems of operators’ seats is a relevant task.

AIM: Development of a mathematical model of a machine with a vibration-protective seat system, taking into account a given input force data and damping coefficients, which will make it possible to study the response of the system to a typical impact when the chassis wheels ride on a step. The model should determine the transient characteristics of a wheeled vehicle with a vibration-protective seat, have a high speed of calculation of the dynamic process, which will ensure simultaneous optimization of more parameters.

METHODS: To develop the model, flat design scheme of the front axle wheels riding on a step of a given height is considered. The vehicle rides on the step with the front axle only, the step height is small relatively to the wheelbase. The vertical oscillations of the center of mass were approximated by a linearized mass oscillation model with one translational degree of freedom. The differential equation of motion of the chassis mass is used to model the vertical coordinate of motion of the seat base. The assumptions of rigid fixation of the operator’s cabin on the chassis and smallness of the mass of the seat with the operator relative to the chassis mass are adopted. The calculation scheme for modeling vertical oscillations of the mass of the seat with the operator relative to the chassis is similar to the scheme of oscillations for the chassis relative to the ground. Two schemes are used simultaneously in one simulation model. Modeling of vertical oscillations of the chassis and the seat with the operator when the chassis wheels ride on a step is carried out using a simulation mathematical model in the SimInTech Russian simulation environment.

RESULTS: As an example of the use of the developed simulation model, the results of modeling of a separate transient process of the machine front axle wheels riding on a step with a height of 0.1 m at a velocity of 1 m/s are given. he results are presented in the form of time dependencies of vertical coordinates of the support surface, base chassis, deformation of the vibration protection mechanism of the seat and corresponding time dependencies of absolute velocity and acceleration of the seat with the operator. The maximum value of the absolute acceleration of the seat with the operator was determined.

CONCLUSION: The simulation model of the riding on a step developed using the SimInTech Russian software takes into account elastic and viscous properties of tires, tire-and-step interaction geometry and nonlinearity of the force response of the vibration protection system. The model is able to simulate the transient process rapidly, which opens up the possibility of analyzing multiple variants and optimizing parameters.

About the authors

Mikhail S. Korytov

The Siberian State Automobile and Highway University

Author for correspondence.
Email: kms142@mail.ru
ORCID iD: 0000-0002-5104-7568
SPIN-code: 2921-4760

Dr. Sci. (Engineering), assistant professor, Professor of the Automotive Transportation Department

Russian Federation, Omsk

Vitaly S. Shcherbakov

The Siberian State Automobile and Highway University

Email: sherbakov_vs@sibadi.org
ORCID iD: 0000-0002-3084-2271
SPIN-code: 6171-2320

Dr. Sci. (Engineering), professor, Professor of the Automation and Power Engineering Department

Russian Federation, Omsk

Irina E. Kashapova

The Siberian State Automobile and Highway University

Email: iriska-97-17-13@mail.ru
ORCID iD: 0000-0002-0631-564X
SPIN-code: 8011-6829

Lecturer at the Automation and Power Engineering Department

Russian Federation, Omsk

References

  1. Berezin IY, Pronina YO, Bondar VN, et al. Experimental studies of characteristics of vibration protection elements for operator workplace of industrial tractor. Tractors and Agricultural Machinery. 2016;83(9):19–22. doi: 10.17816/0321-4443-66196 (In Russ.) EDN: WHWYVX
  2. Podrubalov VK, Podrubalov MV, Nikitenko AN. Applicability of different schemes of a dynamic system of a wheeled tractor at the calculated estimation of its vibration loadability. Tractors and Agricultural Machinery. 2014;81(1):20–25. (In Russ.) EDN: RSPMEX
  3. Kuzmin VA, Godzhaev ZA. Comparative evaluation of the effectiveness of the vibration protection of the active suspension system with PID control. Tractors and Agricultural Machinery. 2018;85(3):62–67. doi: 10.17816/0321-4443-66407 (In Russ.) EDN: UTDXXM
  4. Aiello G, Vallone M, Catania P. Optimising the efficiency of olive harvesting considering operator safety. Biosystems Engineering. 2019;185:15–24. doi: 10.1016/j.biosystemseng.2019.02.016
  5. Mikheyev VV, Saveliev SV, Shushubaeva MK. Natural adaptation of deformable work tools during vibratory soil compaction and enhancement of their performance. Journal of Physics: Conference Series. 2019;1260(6):062015. doi: 10.1088/1742-6596/1260/6/062015 EDN: DUDFXT
  6. Bhatia A, Kalsi S, Sehgal AK, et al. Comparative Study of different Seat Cushion Materials to improve the Comfort of Tractor Seat. Journal of The Institution of Engineers (India): Series A. 2022;103:387–396. doi: 10.1007/s40030-022-00622-8 EDN: ZTTSOK
  7. Chi F, Zhou J, Zhang Q, et al. Avoiding the health hazard of people from construction vehicles: a strategy for controlling the vibration of a wheel loader. International Journal of Environmental Research and Public Health. 2017;14(3):275. doi: 10.3390/ijerph14030275
  8. Nehaev VA, Nikolaev VA, Zakernichnaya NV. Vibration protection of a human-operator based on the application of disturbance-stimulated control mechanism. Journal of Physics: Conference Series. 2018;1050:012057. doi: 10.1088/1742-6596/1050/1/012057 EDN: YBPMAX
  9. Kumar R, Kalsi S, Singh I. Vibration Effect on Human Subject in Different Postures using 4-Layered CAD Model. International Journal of Innovative Technology and Exploring Engineering. 2020;9(7):168–174. doi: 10.35940/ijitee.G5104.059720 EDN: ZYLLHS
  10. Korchagin PA, Teterina IA, Letopolsky AB. Effect of tire dynamic characteristics on vibration load at the operator’s workplace. Journal of Physics: Conference Series. 2020;1441:012097. doi: 10.1088/1742-6596/1441/1/012097 EDN: SRYOMA
  11. Baranovskiy AM, Vikulov SV. Vibration protection system for high-speed vessel crews. Marine intellectual technologies. 2019;3(1):35–38. EDN: BGETSB
  12. Korytov MS, Shcherbakov VS, Kashapova IE. Optimization of design parameters of the vibration protection system of a motor grader seat with quasi-zero stiffness. Tractors and Agricultural Machinery. 2023;90(3):233–244. doi: 10.17816/0321-4443-301264 (In Russ.) EDN: FDVQBQ
  13. Dhanjee KC, Sanjay KP, Vivekanand K, et al. Whole-body vibration exposure of heavy earthmoving machinery operators in surface coal mines: a comparative assessment of transport and non-transport earthmoving equipment operators. International Journal of Occupational Safety and Ergonomics: JOSE. 2020;(1):1–10. doi: 10.1080/10803548.2020.1785154 EDN: DNWUVK
  14. Mian J, Shoushi L, Yong G, et al. The improvement on vibration isolation performance of hydraulic excavators based on the optimization of powertrain mounting system. Advances in mechanical engineering. 2019;11(5). doi: 10.1177/1687814019849988
  15. Huan CC, Ha DV, Vu LA, et al. Ride Comfort Evaluation for a Wheel Loader with Cab’s Hydraulic Isolation System. Lecture Notes in Networks and Systems. 2023;602:846–854. doi: 10.1007/978-3-031-22200-9_89
  16. Zhang X, Liu X, Sun C, et al. Improvement of vibration isolation performance of multi-mode control seat suspension system through road recognition using wavelet-LSTM approach. Journal of Mechanical Science and Technology. 2024;38:121–136. doi: 10.1007/s12206-023-1210-2 EDN: STZMCV
  17. Korytov MS, Bezrodina AE. Development of a mathematical model of a stacker crane with regard to energy dissipation. Nauchno-tekhnicheskiy vestnik Bryanskogo gosudarstvennogo universiteta. 2023;2:134–144. doi: 10.22281/2413-9920-2023-09-02-134-144 (In Russ.) EDN: EAFVRU

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of chassis lifting when the wheels of the front wheel axle of the machine ride on a step with height h (а) and the corresponding equivalent scheme of vertical oscillations of the mass on the movable base (b): mb, mass on the movable base; yop, base coordinate (axis of front axle wheels), changes value from 0 to h; h, height of the step; yb, absolute coordinate of chassis mass, brought to the front axle; yk:, local coordinate of deformation of the nominal, vertically located spring-damper, approximating the corresponding properties of the tires of the two wheels of the front axle of the machine; ck, stiffness coefficient of the front axle wheels; bk, damping coefficient of the front axle wheels.

Download (118KB)
3. Fig. 2. Calculation scheme of vertical mass oscillations of a seat on a movable base (a), and parameter transfer scheme when using the same mass oscillation model twice (b): ms, mass of the movable part of the vibration-protective seat with the operator; Fs, restoring force of the vibration-protective seat system, generally varying according to a nonlinear dependence; bs, damping coefficient of the vibration-protective seat system; ys:, absolute coordinate of the mass of the movable part of the vibration-protective seat with the operator; ys1, relative coordinate of the deformation of the mechanism of the vibration-protective seat system; yb, absolute coordinate of the chassis mass given to the front axle; vs, absolute velocity of the mass of the moving part of the vibration protection seat with the operator; as, absolute acceleration of the mass of the moving part of the vibration protection seat with the operator.

Download (100KB)
4. Fig. 3. Simulation mathematical model of wheeled machine in SimInTech symbols: а, top-level model; b, model of the subsystem for calculating the current value of yop; c, model of the subsystem for calculating the vertical force of the seat vibration protection mechanism Fs.

Download (713KB)
5. Fig. 4. Calculation scheme for determining the current value of the vertical coordinate of the yop axis without taking into account tire deformations, when the wheels of the front axle ride on a step with height h (a) and an example of the force response of a seat vibration protection system (b): yop, base coordinate; h, step height; C, chord length; Fs, restoring force of the vibration-protective seat; ys1, relative coordinate of deformation of the mechanism of the vibration-protective seat system.

Download (190KB)
6. Fig. 5. Time dependences of vertical coordinates of the reference surface yop, base chassis yb, deformation of the seat vibration protection system ys1 (a) and the corresponding time dependences of the absolute velocity vs and acceleration as of the seat. corresponding time dependences of absolute velocity vs and acceleration as of the seat with the operator (b): yop, absolute coordinate of the base; yb, absolute coordinate of the chassis mass given to the front axle; ys1, relative coordinate of deformation of the mechanism of the vibration protection system of the seat; vs, absolute velocity of the mass of the moving part of the vibration protection seat with the operator; as, absolute acceleration of the mass of the moving part of the vibration protection seat with the operator.

Download (134KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».