Topology optimization of the front loader’s working equipment

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: Topological optimization is widely used in aircraft construction and architecture, but is still of limited use in heavy mechanical engineering. At the same time, the metal cutting for production of working bodies, frames and other structures is often carried out by plasma cutters with computer numerical control. This makes it possible to produce flat parts of almost any complexity. Consequently, there is a field for using the topology optimization methods with no need to use additive technologies to create three-dimensional structures.

OBJECTIVE: Weight reduction of the structural components of the front loader’s working equipment without loss of rigidity and strength, as compared with traditional designs; exploration of the capabilities of topological optimization for solving this problem.

METHODS: The DM-30 loader was used as the base machine. Its work equipment was converted into a set of flat-shaped design volumes, to which the topological optimization methods of the Autodesk Inventor Professional (AIP) software package were applied. As the steel structure of the working equipment is subject to load in different directions during operation, a method of sequential generation of parts’ shapes for each design position and synthesis of all the shapes into a single object was used. The forces acting on the components of the working equipment were determined with dynamic simulation of the design positions for the base machine which made it possible to study the majority of operation cases.

RESULTS: As a result, the weight of the front loader was reduced by 36% while sustaining the same strength characteristics.

CONCLUSIONS: The proposed method of formation the optimized steel structure is capable of using simple topological optimization modules and obtaining up to 40% less metal-consuming spatial structures.

About the authors

Yury G. Popov

Yaroslavl State Technical University

Author for correspondence.
Email: popovyug@ystu.ru
ORCID iD: 0000-0002-7594-6234
SPIN-code: 7378-0410

Cand. Sci. (Engineering), Associate Professor of the Construction and Road Machinery Department

Russian Federation, Yaroslavl

References

  1. Mee C. Mycenaean Fortifications, Highways, Dams and Canals. By R. Hope Simpson and D. K. Hagel. Am. J. Archaeol. 2007;111(2):374–375. doi: 10.1086/AJS40037280
  2. Ghabraie K. Applications of Topology Optimization Techniques in Seismic Design of Structure. In: Structural Seismic Design Optimization and Earthquake Engineering. IGI Global; 2012:232–268. doi: 10.4018/978-1-4666-1640-0.ch010
  3. Yuksel O. An overview on topology optimization methods employed in structural engineering. Kırklareli Univ. J. Eng. Sci. 2019:159-175. doi: 10.34186/klujes.606666
  4. Bendsøe MP, Sigmund O. Topology Optimization. Springer Berlin Heidelberg; 2004. doi: 10.1007/978-3-662-05086-6
  5. Meng L., Zhang W., Quan D., et al. From Topology Optimization Design to Additive Manufacturing: Today’s Success and Tomorrow’s Roadmap. Arch Comput Methods Eng. 2020;27(3):805–830. doi: 10.1007/s11831-019-09331-1
  6. Turner C, Gordon B, Mansfield N, Sayah A. Computer-Aided Design (CAD) Trends in Manufacturing for 2022. Technical report, 2022. doi: 10.13140/RG.2.2.11813.78566
  7. Boyarkina I.V. Technological mechanics of single-bucket front-end loaders. Omsk: SibADI; 2011. (In Russ.)
  8. Tsavdaridis KD, Kingman JJ, Toropov V V. Application of structural topology optimisation to perforated steel beams. Comput Struct. 2015;158:108–123. doi: 10.1016/j.compstruc.2015.05.004
  9. Tyflopoulos E, Steinert M. Messing with boundaries — quantifying the potential loss by pre-set parameters in topology optimization. Procedia CIRP. 2019;84:979–985. doi: 10.1016/j.procir.2019.04.307
  10. Tyflopoulos E, Tollnes FD, Steinert M, et al. State of the art of generative design and topology optimization and potential research needs. In: DS 91 Proc Nord 2018, Linköping, Sweden, 14th–17th August 2018. Linköping, 2018.
  11. Barroqueiro B, Andrade-Campos A, Valente RAF. Designing Self Supported SLM Structures via Topology Optimization. J Manuf Mater Process. 2019;3(3):68. doi: 10.3390/jmmp3030068
  12. Fiebig S., Sellschopp J., Manz H., et al. Future challenges for topology optimization for the us-age in automotive lightweight design technologies. In: Proc. of 11th world congress on structural and multidisciplinary optimization, Sydney, Australia. Sydney; 2015;142.
  13. Li Y, Yang Q, Chang T, Qin T, et al. Multi-load cases topological optimization by weighted sum method based on load case severity degree and ideality. Adv Mech Eng. 2020;12(8). doi: 10.1177/1687814020947510
  14. Oest J, Lund E. Topology optimization with finite-life fatigue constraints. Struct Multidiscip Optim. 2017;56(5):1045–1059. doi: 10.1007/s00158-017-1701-9
  15. Ribeiro TP, Bernardo LFA, Andrade JMA. Topology Optimisation in Structural Steel Design for Additive Manufacturing. Appl Sci. 2021;11(5):2112. doi: 10.3390/app11052112
  16. ZHU J, ZHOU H, WANG C, et al. A review of topology optimization for additive manufacturing: Status and challenges. Chinese J Aeronaut. 2021;34(1):91-110. doi: 10.1016/j.cja.2020.09.020
  17. Frantsuzov AA, Shapovalov YI, Vdovin DS. Topology optimization for lifting appliances design. Univ proceedings Volga Reg Tech Sci. 2017;42(2):99–108. (In Russ.) doi: 10.21685/2072-3059-2017-2-9

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural optimization using the example of bridges: a — Arcadico bridge (c. 1300-1190 BC); b — Roman bridge; c — reinforced concrete arch bridge.

Download (102KB)
3. Fig. 2. Types of structural optimization: a — size optimization; b — shape optimization; c — topology optimization.

Download (57KB)
4. Fig. 3. Block diagram of a sequence of topology optimization of a part.

Download (182KB)
5. Fig. 4. The AIP dynamic simulation module. The blue arrow marks the external force, the red arrow marks the reaction in the selected joint.

Download (287KB)
6. Fig. 5. Design positions in the AIP dynamic simulation module.

Download (147KB)
7. Fig. 6. The rocker arm assembly and the sidewall prepared for calculation.

Download (90KB)
8. Fig. 7. Design volumes of the parts forming the steel structure of the boom. The other parts of the working equipment are shown transparent.

Download (428KB)
9. Fig. 8. Optimization of the rocker arm shape: 1 — the initial shape; 2 — shapes for each design position; 3 — the final shape.

Download (99KB)
10. Fig. 9. The revising calculation. The numbers indicate the minimum safety factor value.

Download (166KB)
11. Fig. 10. The working equipment of the loader after optimization.

Download (210KB)
12. Fig. 11. The revising calculation of the assembly of the working equipment. The model is splitted along the symmetry plane.

Download (234KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».