Investigation of carbon-black emissions of a tractor biofuel diesel

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: On the one hand, a petroleum-based liquid fuel diesel engine is a reliable basis for tractors and self-propelled agricultural machines, and on the other hand, the current trends make us to think about the environmental component of these diesel engines and besides to remember about reasonable use of non-renewable petroleum motor fuel. In order to reduce the anthropogenic impact on natural ecosystems and to assess the smokiness of exhaust gases from a tractor diesel running on ethanol and rapeseed oil, the paper considers the relevant model of the carbon-black formation inside it.

AIM: Development of the relevant model of carbon-black emission in a tractor diesel running on ethanol and rapeseed oil to assess the smokiness of exhaust gases and to reduce anthropogenic impact on natural ecosystems.

METHODS: To simulate the processes of formation and burnout of carbon-black particles in a tractor diesel engine, the volume of the combustion chamber was conditionally divided into several areas (soot content indicators in different areas were added up), and the cycle of calculating the exhaust gas smokiness level included several stages (determination of pressure, integral and differential characteristics of heat dissipation, average temperature of the working fluid, fuel supply indicators and fuel evaporation rate, local coefficients of excess air, composition of gases, concentration of decomposition and oxidation products of rapeseed oil and ethanol, the number of carbon-black particles, the mass of dispersed carbon, the rate of transition of particles to the burnout zone).

RESULTS: The developed mathematical model is capable of calculating the carbon-black concentration and the main components of the gas mixture in the reaction zone of the combustion chamber, the content of carbon-black in the exhaust gases at various speed and load modes of operation of a tractor diesel engine. It is capable of obtaining valuable information about the dynamics of the main stages of carbon-black formation and burnout in the cylinder of a tractor diesel engine running on ethanol and rapeseed oil. The results of numerical simulation of carbon-black formation and burnout in a tractor diesel cylinder when running on diesel fuel, ethanol and rapeseed oil are obtained and presented.

CONCLUSION: Based on the developed relevant model of carbon-black emission in a tractor diesel engine running on ethanol and rapeseed oil, an assessment of its exhaust gas smokiness was carried out, clearly showing a decrease by 3.4–3.8 times in comparison with diesel fuel operation. The presented method for calculating the carbon-black emission of tractor diesel can be used in the multi-area modeling and researches of such in-cylinder processes as heat generation, heat transfer, etc. The accuracy of calculations based on the proposed model is characterized by the perfection of mathematical algorithms describing the rate of fuel evaporation, the development of a fuel flare, the determination of local temperatures, the rate of flame propagation, the local composition of gases in the cylinder, etc.

About the authors

Vitaly A. Likhanov

Vyatka State Agrotechnological University

Email: lihanov.va@mail.ru
ORCID iD: 0000-0003-3033-7176
SPIN-code: 9474-7629

Professor, Dr. Sci. (Engineering), Head of the Heat Engines, Automobiles and Tractors Department

Russian Federation, 133 Oktyabrsky avenue, 610017 Kirov

Oleg P. Lopatin

Vyatka State Agrotechnological University

Author for correspondence.
Email: nirs_vsaa@mail.ru
ORCID iD: 0000-0002-0806-6878
SPIN-code: 8716-0189

Dr. Sci. (Engineering), Professor of the Heat Engines, Automobiles and Tractors Department

Russian Federation, 133 Oktyabrsky avenue, 610017 Kirov

References

  1. Naeem A, Zaman Sh, Farooq M, et al. Biodiesel production from waste cooking oil employing natural bentonite supported heterogeneous catalyst: waste to biodiesel. Korean Journal of Chemical Engineering. 2022;39(6):1450–1459. doi: 10.1007/s11814-022-1068-5
  2. Abusweireh RS, Rajamohan N, Vasseghian Y. Enhanced production of biodiesel using nanomaterials: a detailed review on the mechanism and influencing factors. Fuel. 2022;319:123862. doi: 10.1016/j.fuel.2022.123862
  3. Lopatin OP. Calculation of the process of nitrogen oxides formation during combustion of methanol in the engine. IOP Conf. Ser.: Mat. Sci. Engng. 2020;919:062011. doi: 10.1088/1757-899X/919/6/062011
  4. Lv J, Wang S, Meng B. The effects of nano-additives added to diesel-biodiesel fuel blends on combustion and emission characteristics of diesel engine: a review. Energies. 2022;15(3):1032. doi: 10.3390/en15031032
  5. Landwehr KR, Mead-Hunter R, Kicic A, et al. Toxicity of different biodiesel exhausts in primary human airway epithelial cells grown at air-liquid interface. Science of the Total Environment. 2022;832:155016. doi: 10.1016/j.scitotenv.2022.155016
  6. Alrashidi AMRN, Adam NM, Bin Mohd Ariffin MKA, et al. Impact of plasma combustion technology on micro gas turbines using biodiesel fuels. Applied Sciences (Switzerland). 2022;12(9):4321. doi: 10.3390/app12094321
  7. Lihanov VA, Lopatin OP. Primenenie rapsovogo masla i jetanola v dizel’nom dvigatele. Inzhenernye tehnologii i sistemy. 2022;32(3): 373–389. (In Russ.) doi: 10.15507/2658-4123.032.202203.373-389
  8. Farokhnia A, Jokar SM, Parvasi P, Kim AS. A novel design for biodiesel production from methanol + mutton bone fat mixture. Biotechnology for Biofuels and Bioproducts. 2022;15(1):1–14. doi: 10.1186/s13068-022-02229-4
  9. Sharma P, Chhillar A, Le MP, et al. Using response surface methodology approach for optimizing performance and emission parameters of diesel engine powered with ternary blend of solketal-biodiesel-diesel. Sustainable Energy Technologies and Assessments. 2022;52:102343. doi: 10.1016/j.seta.2022.102343
  10. Dias LC, Passeira C, Malça J, Freire F. Integrating life-cycle assessment and multi-criteria decision analysis to compare alternative biodiesel chains. Annals of Operations Research. 2022;312(2):1359–1374. doi: 10.1007/s10479-016-2329-7
  11. Lihanov VA, Lopatin OP, Shishkanov EA. Snizhenie soderzhanija oksidov azota v otrabotavshih gazah dizelja putem ih recirkuljacii. Traktory i sel’hozmashiny. 2007;9:8–9. (In Russ.) EDN: HGFVEP
  12. Pacheco JR, Cavalcante RM, Villardi HGD, Young AF. Biodiesel production through non-conventional supercritical routes: process simulation and technical evaluation. Energy Conversion and Management. 2022;251:114998. doi: 10.1016/j.enconman.2021.114998
  13. Goh BHH, Chong CT, Ong HC, et al. Strategies for fuel property enhancement for second-generation multi-feedstock biodiesel. Fuel. 2022;315:123178. doi: 10.1016/j.fuel.2022.123178
  14. Lihanov VA, Lopatin OP. Snizhenie soderzhanija oksidov azota v otrabotavshih gazah dizelja s turbonadduvom putem primenenija prirodnogo gaza. Traktory i sel’hozmashiny. 2010;1:11–13. (In Russ.) EDN: KYQMOX
  15. Demirpolat AB, Uyar MM, Arslanoğlu H. Biodiesel fuels produced from poppy and canola oils, experimental investigation of the performance and emission values of the samples obtained by adding new types of nanoparticles. Petroleum Chemistry. 2022;62(4):433–443. doi: 10.1134/s0965544122020190
  16. Soni AK, Kumar S, Pandey M. Performance comparison of microalgae biodiesel blends with petro–diesel on variable compression ratio engine. Journal of The Institution of Engineers (India): Series E. 2022;103(1):53–63. doi: 10.1007/s40034-020-00183-0
  17. Paparao J, Murugan S. Dual-fuel diesel engine run with injected pilot biodiesel-diesel fuel blend with inducted oxy-hydrogen (HHO) gas. International Journal of Hydrogen Energy. 2022;47(40):17788–17807. doi: 10.1016/j.ijhydene.2022.03.235
  18. Lihanov VA, Lopatin OP, Chuprakov AI, Junusov GS. Modelirovanie processov isparenija i smeseobrazovanija v cilindre traktornogo dizelja pri rabote na jetanolo-toplivnoj jemul’sii. Izvestija MGTU «MAMI». 2017;1(31):23–27. (In Russ.) EDN: WMOTRM
  19. Yadav Kh, Kumar N, Chaudhary R. Effect of synthetic and aromatic amine antioxidants on oxidation stability, performance, and emission analysis of waste cooking oil biodiesel. Environmental Science and Pollution Research. 2022;29(19):27939–27953. doi: 10.1007/s11356-021-18086-x
  20. Gowrishankar S, Krishnasamy A. A relative assessment of emulsification and water injection methods to mitigate higher oxides of nitrogen emissions from biodiesel fueled light-duty diesel engine. Fuel. 2022;308:121926. doi: 10.1016/j.fuel.2021.121926
  21. Lihanov VA, Lopatin OP. Issledovanie pokazatelej rabochego processa bystrohodnogo malorazmernogo dizelja pri rabote na jetanole i rapsovom masle. Dvigatelestroenie. 2022;2(288):61–71. (In Russ.) doi: 10.18698/jec.2022.2.61-71
  22. Zandie M, Ng HK, Gan S, et al. Review of the advances in integrated chemical kinetics-computational fluid dynamics combustion modelling studies of gasoline-biodiesel mixtures. Transportation Engineering. 2022;7:100102. doi: 10.1016/j.treng.2021.100102
  23. Moreira CA, Faria ECM, Queiroz JE, et al. Structural insights and antioxidant analysis of a tri-methoxy chalcone with potential as a diesel-biodiesel blend additive. Fuel Processing Technology. 2022;227:107122. doi: 10.1016/j.fuproc.2021.107122
  24. Ardebili SMS, Kocakulak T, Aytav E, Calam A. Investigation of the effect of JP-8 fuel and biodiesel fuel mixture on engine performance and emissions by experimental and statistical methods. Energy. 2022;254:124155. doi: 10.1016/j.energy.2022.124155
  25. Lihanov VA, Kozlov AN. Modelirovanie sazhevydelenija v cilindre dizelja 2Ch 10,5/12,0 pri rabote na al’ternativnyh toplivah. Kirov: Vjatskij GATU; 2019. (In Russ.)
  26. Mohan chandra kumar O., Simhadri K. Effect of Al2O3 nanoparticle blended mahua oil biodiesel combustion on performance and emission characteristics of CI engine. Nanotechnology for Environmental Engineering. 2022;7(3):765–774. doi: 10.1007/s41204-022-00219-3
  27. Perumalla Vijaya Kumar, Kumar AN, Ashok B, et al. Evaluation of performance, emissions and combustion attributes of ci engine using palmyra biodiesel blend with distinct compression ratios, EGR rates and nano-particles. Fuel. 2022;321:124092. doi: 10.1016/j.fuel.2022.124092
  28. Lihanov VA, Lopatin OP. Issledovanie toksichnosti dizel’nogo dvigatelja pri rabote na razlichnyh al’ternativnyh toplivah. Dvigatelestroenie. 2023;2(292):54–61. (In Russ.) doi: 10.18698/jec.2023.2.54-61
  29. Kumar N, Raheman H. Thermal and environmental performance of ci engine using ceo2 nanoparticles as additive in water–diesel–biodiesel fuel blend. International Journal of Environmental Science and Technology. 2022;19(4):3287–3304. doi: 10.1007/s13762-021-03262-w
  30. Baturin SA. Fizicheskie osnovy i matematicheskoe modelirovanie processov sazhevydelenija i teplovogo izluchenija v dizeljah [dissertation] Leningrad; 1982. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Indicators of the combustion process of the 2Ch 10.5/12.0 tractor diesel engine at the nominal operating mode: a — indicator pressure; b — average temperature of gases in the cylinder; c — active heat dissipation; d — heat dissipation rate.

Download (310KB)
3. Fig. 2. Characteristics of fuel evaporation and heat dissipation in the combustion chamber of the tractor diesel.

Download (177KB)
4. Fig. 3. Temperature curves of the processes of carbon black formation and burnout.

Download (180KB)
5. Fig. 4. Calculated indicators carbon-black content in the cylinder of the tractor diesel engine during operation: a — the number of carbon black particles, pcs.; b — the current average mass diameter of carbon black particles in the cylinder, nm; c — the mass concentration of carbon black in the cylinder, g/m3; d — the mass content of carbon black in the cylinder, mg.

Download (350KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».