Mathematical model of the cross-section of wheat grain

封面

如何引用文章

详细

BACKGROUND: When studying the optimal length of the holes in the lattice bottom of the inclined chamber of a combine harvester, which ensures preliminary separation of the combed grain heap, the cross section of wheat grain was modeled in the shape of a separate ball or a cut cylinder. This is due to the fact that the description of the technological process is significantly simplified with this shape of grain. However, such models of the grain cross-section are very far from the real shape of the object, since the dorsal side of the grains is convex, and there is a longitudinal groove on the ventral side. The kind of surface closest to the real shape of the grain is the Pascal’s snail mathematical model. For this model, the centroid coordinates are determined, and equations are obtained for calculating its cross-sectional area and moments of inertia for each coordinate axis. Verification of the obtained equations in the KOMPAS-3D software showed that the discrepancy between the real and theoretically predicted values of the centroid coordinates is about 13%, which reduces the adequacy of the calculations and requires their refinement.

AIM: Refinement of the mathematical model of the cross-section of wheat grain shaped as the Pascal’s snail.

METHODS: The object of the study is a cross section of wheat grain shaped as the Pascal’s snail. When determining the centroid coordinates, methods of theoretical mechanics were used, and the resulting expressions were verified in the KOMPAS-3D three-dimensional modeling software.

RESULTS: Mathematical expressions for analytical calculation of the centroid coordinates are obtained for different versions of the Pascal’s snail: a = b (cardioid), a < b (the Pascal’s snail without an internal loop), a > b (the Pascal’s snail with an internal loop). Verification of the obtained expressions proves their adequacy, since the convergence of theoretical and experimental data is 100%.

CONCLUSIONS: The use of refined mathematical models of the cross-section of wheat grain can significantly simplify the modeling of the separation process of combed heaps, as well as to increase the accuracy of calculations. To simplify the description of this process, it is advisable to use the KOMPAS-3D three-dimensional modeling software.

作者简介

Victor Nikitin

Bryansk State Agrarian University

编辑信件的主要联系方式.
Email: viktor.nike@yandex.ru
ORCID iD: 0000-0003-1393-2731
SPIN 代码: 5246-6938
Scopus 作者 ID: 57201686117

Associate Professor, Dr. Sci. (Engineering), Head of the Technical Service Department

俄罗斯联邦, 2a Sovetskaya street, 243365 Kokino, Vygonichsky District of Bryansk Oblast

Victor Ozhereliev

Bryansk State Agrarian University

Email: vicoz@bk.ru
ORCID iD: 0000-0002-2121-3481
SPIN 代码: 3423-0991
Scopus 作者 ID: 57195608281

Professor, Dr. Sci. (Agriculture), Professor of the Technical Systems in Agrobusiness, Environmental Management and Road Construction Department

俄罗斯联邦, 2a Sovetskaya street, 243365 Kokino, Vygonichsky District of Bryansk Oblast

Natalia Sinyaya

Bryansk State Agrarian University

Email: sinzea@yandex.ru
ORCID iD: 0000-0002-1794-1347
SPIN 代码: 9225-4347

Cand. Sci. (Engineering), Associate Professor of the Technical Service Department

俄罗斯联邦, 2a Sovetskaya street, 243365 Kokino, Vygonichsky District of Bryansk Oblast

参考

  1. Buryanov AI, Chervyakov IV. Using combines for cleaning grain crops by non-traditional technologies. INMATEH — Agricultural Engineering. 2019;59(3):27–32. doi: 10.35633/INMATEH-59-03
  2. Lachuga YuF, Buryanov AI, Pakhomov VI, et al. Adaptation of threshing devices to physical and mechanical characteristics of harvested crops. Russian Agricultural Sciences. 2020;46(2): 198–201. doi: 10.3103/S1068367420020111
  3. Zhalnin EV. Technical innovations in agricultural production and resource-saving effect. AgroSnabForum. 2017;3(151):14. (in Russ.) EDN: YMDHKX
  4. Zhalnin EV. Cleaning with a comb on the root: pros and cons. Sel’skij mekhanizator. 2013;8:10–12 (in Russ.) EDN: RCFKAZ
  5. Lezhenkin AM, Kravchuk VI, Kushnarev AS. Tekhnologiya uborki zernovyh kul’tur metodom ochesyvaniya na kornyu: sostoyanie i perspektivy. Doslidnitskoe; 2010. (in Russ.)
  6. Ozherelev VN, Nikitin VV. The results of the combine design adaptation to work with a stripper header. Inzhenernye tekhnologii i sistemy. 2022;32(2):190–206 (in Russ.) EDN: RBNYLL doi: 10.15507/2658-4123.032.202202.190-206
  7. Ozherelyev VN, Nikitin VV, Belous NM, et al. Perspectives of grain pile separation before it enters the thresh-ER. International Journal of ngineering and Technology (UAE). 2018;7(2.13):14–116.
  8. Nikitin VV. Determination of the optimal length of the bottom of the inclined chamber of a combine harvester when weighing. Sel’skij mekhanizator. 2018;5:8–9 (in Russ.) EDN: XWCSDZ
  9. Goryachkin VP. Sobranie sochinenij. 3 Vols. Moscow: Kolos; 1968;1. (in Russ.)
  10. Vasilenko VV, Vasilenko SV, Baskakov IV. Rational scheme of a feeder of a stationary threshing machine of a combed heap. Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta. 2022;15(74):12–18. (in Russ.)
  11. Ozherelev VN, Nikitin VV, Komogortsev VF. Inclined chamber of a combine harvester. Vestnik Bryanskoj gosudarstvennoj sel’skohozyajstvennoj akademii. 2016;3:65–70. (in Russ.).
  12. Nikitin VV. Sovershenstvovanie tekhnologicheskoj skhemy zernouborochnogo kombajna i parametrov ego rabochih organov [dissertation] Bryansk; 2021. (in Russ.) EDN: TRVVBB
  13. Mayatskaya I.A. Development of mechanical and mathematical models of seeds of agricultural crops harvested by grain combines [Abstract dissertation]. Rostov-on-Don; 2000. (in Russ.) EDN: ZKLDMX
  14. Mayatskaya I. A., Demchenko B.M. Determination of the mid-section of plant objects of various shapes. Internet-zhurnal Naukovedenie. 2013;3(16):109. (in Russ.) EDN: QZXZEB
  15. Targ S.M. Kratkij kurs teoreticheskoj mekhaniki. Moscow: Vysshaya shkola; 2010. (in Russ.)

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Special cases of the cross-section of wheat grain shaped as the Pascal’s snail: a) a = b (cardioid); b) a < b (the Pascal’s snail without an internal loop); c) a > b (the Pascal’s snail with an internal loop).

下载 (151KB)
3. Fig. 2. Screenshot of the working window of the KOMPAS-3D software when determining the centroid of the cardioid (a = b = 20 mm).

下载 (293KB)
4. Fig. 3. Screenshot of the working window of the KOMPAS-3D software when determining the centroid of the Pascal’s snail at a = 20 mm and b = 30 mm.

下载 (214KB)
5. Fig. 4. The Pascal’s snail with an internal loop.

下载 (68KB)
6. Fig. 5. Screenshot of the working window of the KOMPAS-3D software when determining the centroid of the Pascal’s snail at a = 20 mm and b = 15 mm.

下载 (251KB)

版权所有 © Eco-Vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».