Conceptual directions for the development of driverless agricultural mobile power units

Cover Page

Cite item

Abstract

BACKGROUND: Currently, major global developers and manufacturers in the field of mobile agricultural machinery are working on the development of agricultural robotic systems. Particular attention is paid to the development of universal driverless mobile power units (MPU) capable of performing various technological operations autonomously, without human intervention. In the future, this makes it possible to exclude the operator from the MPU control process and to reconsider approaches to the issue of increasing the efficiency of technological operations. The existing trend of productivity improvement by increasing the main parameters of the unit, such as operating width, operating velocities, load capacity, etc., may change to an alternative path consisting in the use of numerous autonomous small-sized units comparable in performance (a swarm of agricultural robots). Thus, the use of driverless control systems makes it possible to use conceptually new approaches to the development of agricultural MPUs. In this regard, it becomes relevant to conduct the study aimed at identifying promising conceptual directions for the development of driverless MPUs and evaluating the efficiency of their application.

AIM: Identification of conceptual directions for the development of driverless driverless MPUs and a theoretical assessment of the efficiency of their application.

METHODS: The study object was the MPU transformation in the context of the development of driverless control systems. The study was based on scientific publications on the development of robotic agricultural tools, informational data of manufacturers of agricultural tractors and control systems for agricultural machinery. In the course of the study, such methods as information analysis, synthesis, methods of performance analysis of agricultural units and analysis of present cost of performing technological operations, adapted for driverless MPUs by the VIM, were used.

RESULTS: The prospects for the introduction of driverless MPUs, the existing digital and intelligent control systems of MPUs and the main factors hindering their development are analyzed. A classification of agricultural MPUs according to automation levels is proposed. The main directions of development are identified and conceptual models of driverless MPUs are proposed: universal driverless MPUs (driverless tractors) with keeping the existing traction class and power classification, universal (multifunctional) low-power driverless MPUs of the only traction class, separate power modules capable of being combined into a single driverless unit based on the coupled agricultural machine. The method is proposed and the equivalent number of driverless MPUs of each conceptual model for each traction class is calculated. An assessment of the impact of the use of the proposed conceptual models of driverless MPUs on the arable unit performance and the present cost of arable operations has been carried out.

CONCLUSIONS: Conceptual models for the advancing of driverless MPUs have been developed and comparative calculations of the efficiency of their application as part of arable units, helping to assess the possible prospects for their use, have been made.

About the authors

Ivan A. Starostin

Federal Scientific Agroengineering Center VIM

Author for correspondence.
Email: starwan@yandex.ru
ORCID iD: 0000-0002-8890-1107
SPIN-code: 7301-6845

Cand. Sci. (Engineering), Head of the Laboratory for Forecasting the Development of Machine Systems and Technologies in the Agro-Industrial Complex

Russian Federation, 5 1st Institutsky proezd street, 109428 Moscow

Aleksandr V. Eshchin

Federal Scientific Agroengineering Center VIM

Email: eschin-vim@yandex.ru
ORCID iD: 0000-0002-9368-7758
SPIN-code: 7610-5793

Cand. Sci. (Engineering), Senior Researcher at the Laboratory for Forecasting the Development of Machine Systems and Technologies in the Agro-Industrial Complex

Russian Federation, 5 1st Institutsky proezd street, 109428 Moscow

Teimur Z. Godzhaev

Federal Scientific Agroengineering Center VIM

Email: tgodzhaev95@yandex.ru
ORCID iD: 0000-0002-4496-0711
SPIN-code: 4808-7437

Head of the Modeling and Optimization of Mobile Energy Equipment Sector

Russian Federation, 5 1st Institutsky proezd street, 109428 Moscow

Svetlana A. Davydova

Federal Scientific Agroengineering Center VIM

Email: davidova-sa@mail.ru
ORCID iD: 0000-0002-1219-3335
SPIN-code: 1050-6034

Cand. Sci. (Engineering), Leading Researcher at the Laboratory for Forecasting the Development of Machine Systems and Technologies in the Agro-Industrial Complex

Russian Federation, 5 1st Institutsky proezd street, 109428 Moscow

References

  1. Starostin IA, Eshchin AV, Davydova SA. Global trends in the development of agricultural robotics. IOP Conf. Series: Earth Env. Sci. 2023;1138:012042. doi: 10.1088/1755-1315/1138/1/012042
  2. Lobachevskij JaP, Bejlis VM, Cench JuS. Aspekty cifrovizacii Sistemy tehnologij i mashin // Jelektrotehnologii i jelektrooborudovanie v APK. 2019;3(36):40–45. (In Russ). EDN RLCDHO
  3. Aksenov A.G. Analiz intellektual'nyh sistem podderzhki prinjatija reshenij v sel'skom hozjajstve // Jelektrotehnologii i jelektrooborudovanie v APK. 2019;3(36):46–51. (In Russ). EDN CECDAH
  4. Izmailov AYu, Godzhaev ZA, Grishin AP, et al. Digital agriculture (a review of digital technologies for agricultural purposes). Innovations in agriculture. 2019;2(31):41–52. (In Russ). EDN: JNIMAH
  5. Lobachevskij JaP, Dorohov AS. Cifrovye tehnologii i robotizirovannye tehnicheskie sredstva dlja sel'skogo hozjajstva. Sel'skohozjajstvennye mashiny i tehnologii. 2021;15(4):6–10. (In Russ). EDN YFRZDV doi: 10.22314/2073-7599-2021-15-4-6-10
  6. Starostin IA, Belyshkina ME, Chilingaryan NO, Alipichev AYu. Digital technologies in agricultural production: implementation background, current state and development trends. Agricultural engineering. 2021;3(103):4–10.
  7. Fedorenko VF, Mishurov NP, Buklagin DS, et al. Digital agriculture: state and development prospects. M.: Rosinformagrotech; 2019. (In Russ) 8. Starovojtov SI, Cench JuS, Korotchenja VM, Lichman GI.
  8. Tehnicheskie sistemy cifrovogo kontrolja kachestva obrabotki pochvy. Sel'skohozjajstvennye mashiny i tehnologii. 2020;14(1):16–21. (In Russ). doi: 10.22314/2073-7599-2020-14-1-16-21
  9. Goltyapin VYa. Systems of parallel driving of machine-tractor units.Technique and equipment for the village. 2013;11:12–14. (In Russ). EDN: RKAJJT
  10. Matyuk NS, Zinchenko SI, Mazirov MA, et al. Resource-saving technologies of tillage in adaptive agriculture. Ivanovo: FGBNU Verkhnevolzhskiy FANTs; 2020. (In Russ). EDN: OXDIHN
  11. Cognitive Agro Pilot Automatic driving system [internet]. accessed: 14.07.2023. Available from: https://www.tadviser.ru/index.php/
  12. Sajapin AS, Petrishhev NA, Pestrjakov EV. Sovershenstvovanie upravlenija tehnicheskim sostojaniem mashin za schet ispol'zovanija cifrovyh sredstv monitoringa. Tehnicheskij servis mashin. 2023;61(4(153)):10–17. (In Russ). doi: 10.22314/2618-8287-2023-61-4-10-17
  13. Godzhaev ZA, Lavrov AV, Shevtsov VG, Zubina VA. On the choice of the technological direction of development of the system of agricultural mobile power equipment. Izvestiya MSTU MAMI. 2020;1:35–41. (In Russ). EDN: WVVVVS doi: 10.31992/2074-0530-2020-43-1-35-41
  14. Taxonomy And Definitions For Terms Related To Driving Automation Systems For On-Road Motor Vehicles. SAE J 3016. Washington: SAE, 2018.
  15. Izmailov AYu, Lobachevsky YaP, Dorokhov AS. Modern technologies and equipment for agriculture — trends of the exhibition AGRITECHNIKA 2019. Tractors and agricultural machinery. 2020;6:28– 40. (In Russ). EDN: OPALJD doi: 10.31992/0321-4443-2020-6-28-40
  16. Kutkov GM. Development of the technical concept of the tractor. Tractors and agricultural machinery. 2019;1:27–35. (In Russ). EDN: ECZSAK doi: 10.31992/0321-4443-2019-1-27-35
  17. New tracked and wheeled John Deere tractors [internet]. accessed: 14.07.2023. Available from: https://www.deere.ru/ru/tractors/
  18. Case IH tractors [internet]. accessed: 14.07.2023. Available from: https://www.caseih.com/apac/ru–ru/products/tractors
  19. Latest generation of seed sowing robots: The Fendt Xaver comes of age. Official website of AGCO GmbH. [internet]. accessed: 14.07.2023. Available from: https://www.fendt.com/int/2-fendt-xaver
  20. Krestovnikov KD, Erashov AA, Vasjunina JuG, Savel'ev AI. Razrabotka ustrojstva soprjazhenija dlja modul'noj sel'skohozjajstvennoj robototehnicheskoj platformy. Sel'skohozjajstvennye mashiny i tehnologii. 2022;16(1):78–88. (In Russ) EDN MNHHSN doi: 10.22314/2073-7599-2022-16-1-78-88
  21. Grimstad L, From PJ. The Thorvald II agricultural robotic system. Robotics. 2017;6:24.
  22. Vereshchagin NI, Levshin AG, Skorokhodov AN. Organization and technology of mechanized work in crop production. Moscow: Akademiya; 2013. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 3. Coupling of driverless MPUs with ploughs, unstriped and inter-row cultivators. a — conceptual model A; b — conceptual model B; c — conceptual model of C.

Download (349KB)
3. Fig. 1. Advancing of autonomous control systems of agricultural MPUs.

Download (269KB)
4. Fig. 2. Conceptual directions of development of driverless agricultural MPUs.

Download (252KB)
5. Fig. 4. Results of calculation of equivalent number of driverless MPUs of the conceptual models A, B and C depending on drawbar category of a basic tractor.

Download (197KB)
6.  Fig. 5. Assessed hour performance of arable units including driverless MPUs of various conceptual models.

Download (188KB)
7. Fig. 6. Decreasing the present value of ploughing per hectare using driverless MPUs in comparison with basic tractors.

Download (133KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».