Monitoring of organohalogen compounds in the Northern Dvina River using the parameter of mass concentration of adsorbed organically bound halogens

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study of the water of the largest river in the European North of Russia, the Northern Dvina, for the content of organohalogen compounds (OHC) was carried out by monitoring the mass concentration of adsorbed organically bound halogens (AOH) in the section of the river accepted as “conditionally clean” and 500 m downstream of the discharge point of treated wastewater from an integrated pulp and paper mill. At the same time, a study was carried out on the influence of river runoff, the amount of precipitation, and air temperature on the variability of the AOH parameter and the amount of AOH discharged with the river runoff during 2022. The analysis of the obtained data indicates that this parameter is relatively unstable and directly depends on the quantity and quality of surface and groundwater runoff of the river coming from the entire catchment area. These circumstances, of course, hinder the determination of the maximum permissible concentration of organohalogen compounds in the reservoir. The conventional “background” level of AOH in river water in 2022 upstream of the wastewater discharge site of Arkhangelsk Pulp and Paper Mill JSC with AOH values sampled n = 87 was 31.8 ± 8.2 μg/l with maximum and minimum values of 13.2 μg/l and 58.0 μg/l, respectively; 500 m downstream of the plant’s wastewater discharge with AOH values sampled n = 24 was 34.3 ± 3.2 μg/l with maximum and minimum values of 14.9 μg/l and 71.0 μg/l, respectively. The peculiarities of the formation of the AOH level in water and the relatively small contribution, ≤1.5%, brought in with the wastewater of the plant to the total natural discharge of AOH in the studied section of the river do not allow us to identify any influence of wastewater on the change in the natural background of organohalogen compounds in the water of the Northern Dvina River.

About the authors

T. A Koroleva

N. Laverov Federal Center for Integrated Arctic Research, Ural Branch of the Russian Academy of Sciences

Email: tataak@mail.ru
Arkhangelsk, Russia

V. M Bykov

N. Laverov Federal Center for Integrated Arctic Research, Ural Branch of the Russian Academy of Sciences

Arkhangelsk, Russia

E. A Moskalyuk

JSC “Arkhangelsk Pulp and Paper Mill”

Novodvinsk, Russia

E. V Korepina

JSC “Arkhangelsk Pulp and Paper Mill”

Novodvinsk, Russia

References

  1. Бреховских В.Ф., Волков З.В. Проблемы качества поверхностных вод в бассейне Северной Двины. М.: Наука, 2003. 233 с.
  2. Брусиловский С.А., Дворов В.И. Некоторые черты геохимии фтора в термальных и других типах природных вод // Региональная геотермия и распространение термальных вод в СССР. М.: Недра, 1967. С. 298-308.
  3. Гидрология устьевой области Северной Двины / Под ред. М.И. Зотина. М.: Гидрометеоиздат, 1965. 376 с.
  4. Гордеев В.В., Шевченко В.П., Коробов В.Б., Коченкова А.И., Стародымова Д.П., Белоруков С.К., Лохов А.С., Яковлев А.Е., Чульцова А.Л., Золотых Е.О., Лобковский Л.И. Концентрация химических элементов в воде и взвеси реки Северная Двина и годовой валовый сток в Белое море // Докл. наук о Земле. 2021. Т. 500. № 1. С. 787-793.
  5. Гордеев В.В., Шевченко В.П., Новигацкий А.Н., Коченкова А.И., Стародымова Д.П., Лохов А.С., Белоруков С.К., Яковлев А.Е. Зона перехода река-море (маргинальный фильтр) реки Северная Двина как эффективная ловушка речного осадочного вещества на пути в открытую зону Белого моря // Океанология. 2022. Т. 62. № 2. С. 221-230.
  6. Королева Т.А., Вельяминова А.В., Колпакова Е.А. Интегральный параметр контроля качества воды - концентрация адсорбируемых галогенорганических соединений // Экология и пром-сть России. 2023. Т. 27. № 8. С. 36-41.
  7. Коченкова А.И., Новигатский А.Н., Гордеев В.В., Коробов В.Б., Белоруков С.К., Лохов А.С., Яковлев А.Е. Особенности сезонного распределения взвеси и органического углерода по данным обсерватории “маргинальный фильтр реки Северная Двина” // Океанологические исследования. 2018. Т. 46. № 2. С. 96-111.
  8. Кузнецов В.С., Мискевич И.В., Зайцева Г.Б. Гидрохимическая характеристика крупных рек бассейна Северной Двины. Л.: Гидрометеоиздат, 1991. 195 с.
  9. Лупачев Ю.В., Макарова Т.А. Проникновение морских вод в рукава дельты Северной Двины и его возможные изменения // Тр. ГОИН. 1976. Вып. 172. С. 117-125.
  10. Макарова Т.А. Сток и уровни воды в устьевой области Северной Двины и их возможные изменения // Тр. ГОИН. 1976. Вып. 172. С. 110-117.
  11. Малов А.И. Подземные воды Юго-Восточного Беломорья: формирование, роль в геологических процессах. Екатеринбург: Уро РАН, 2003. 234 с.
  12. Мягченко А.П. Портянко В.Ф. Содержание фторидов в водах Северного Приазовья // Гигиена и санитария. 1985. № 10. С. 58-59.
  13. Общая гидрология: учебник / Под ред. А.Д. Добровольского, М.И. Львовича. Л.: Гидрометеоиздат, 1973. 462 с.
  14. Погода и климат. https://www.pogodaiklimat.ru (дата обращения: 15.11.2023)
  15. Information Technology Handbook on Best Available Technologies ITH-2023. Production of Pulp. Paper and Board (In Russian). https://burondt.ru/NDT/NDTDocsDetail.php?UrlId=2101&etkstructure_id=1872 (дата обращения: 19.02.2023)
  16. Савенко В.С. Химический состав взвешенных наносов рек мира. М.: ГЕОС, 2006. 174 с.
  17. Сводка измерений по гидропосту с. Усть-Пинега на р. Северная Двина. https://allrivers.info/gauge/severnaya-dvina-ust-pinega (дата обращения: 15.11.2023)
  18. Atashgahi S., Häggblom M.M., Smidt H. Organohalide respiration in pristine environments: implications for the natural halogen cycle // Environ. Microbiol. 2018. V. 20. №. 3. P. 934-948.
  19. Avino P., Capannesi G., Rosada A. Source identification of inorganic airborne particle fraction (PM 10) at ultratrace levels by means of INAA short irradiation // Environ. Sci. Pollution Res. 2014. V. 21. P. 4527-4538.
  20. Benavent N., Mahajan A.S., Li Q. et al. Substantial contribution of iodine to Arctic ozone destruction // Nature Geo-sci. 2022. V. 15. № 10. P. 770-773.
  21. Berry W.L., Wallace A. Toxicity: The concept and relationship to the dose response curve // J. Plant Nutrition Soil Sci. 1981. V. 3. P. 13-19.
  22. Bidleman T.F., Andersson A., Jantunen L. et al. A review of halogenated natural products in Arctic, Subarctic and Nordic ecosystems // Emerging Contaminants. 2019. V. 5. P. 89-115.
  23. Biester H., Keppler F., Putschew A. et al. Halogen retention, organohalogens, and the role of organic matter decomposition on halogen enrichment in two Chilean peat bogs // Environ. Sci. Technol. 2004. V. 38. № 7. P. 1984-1991.
  24. Campanella L., Crescentini G., Avino P., Moauro A. Determination of macrominerals and trace elements in the alga Spirulina platensis // Analusis. 1998. V. 26. № 5. P. 210-214.
  25. Chen B. et al. Methods for total organic halogen (TOX) analysis in water: Past, present, and future // Chem. Engineering J. 2020. V. 399. № article 125675.
  26. Dinu M., Moiseenko T., Baranov D. Snowpack as indicators of atmospheric pollution: the Valday upland //Atmosphere. 2020. V. 11. № 5. P. 462.
  27. Du Z., Ding S., Xiao R., Fang C., Song W., Jia R., Chu W. Does Snowfall Introduce Disinfection By-product Precursors to Surface Water // Environ. Sci. Technol. 2022. V. 56. № 20. P. 14487-14497.
  28. Dulka J.J., Risby T.H. Ultratrace metals in some environmental and biological systems //Analytical Chem. 1976. V. 48. № 8. P. 640A-653A.
  29. Edmonds M., Grattan J., Michnowicz S. Volcanic gases: silent killers // Observing the Volcano World: Volcano Crisis Communication. 2018. P. 65-83.
  30. Field J., Sierra-Alvarez R. Natural production of organohalide compounds in the environment // Organohalide-Respiring Bacteria. 2016. P. 7-29.
  31. Finkel R.C., Langway C.C., Clausen H.B. Changes in precipitation chemistry at Dye 3, Greenland // J. Geophys. Res. Atmospheres. 1986. V. 91. Is. D9. P. 9849-9855.
  32. George C., Ammann M., D’Anna B. et al. Heterogeneous photochemistry in the atmosphere // Chem. Rev. 2015. V. 115. № 10. P. 4218-4258.
  33. Goto-Azuma K., Koerner R.M., Demuth M.N., Watanabe O. Seasonal and spatial variations of snow chemistry on Mount Logan, Yukon, Canada // Annals of Glaciol. 2006. V. 43. № 1. P. 177-186.
  34. Gribble G.W. Amazing organohalogens: Although best known as synthetic toxicants, thousands of halogen compounds are, in fact, part of our natural enviornment // Am. Sci. 2004. T. 92. № 4. P. 342-349.
  35. Gribble G.W. Naturally occurring organohalogen compounds - A comprehensive Review. Progress in the Chemistry of Organic Natural Products 121. 2023. 546 p.
  36. Gustavsson M. et al. Organic matter chlorination rates in different boreal soils: the role of soil organic matter content // Environ. Sci. Technol. 2012. V. 46. № 3. P. 1504-1510.
  37. Kinani A., Kinani S., Richard B., Lorthioy M., Bouchonnet S. Formation and determination of organohalogen by-products in water. Pt I. Discussing the parameters influencing the formation of organohalogen by-products and the relevance of estimating their concentration using the AOX (adsorbable organic halide) method // TrAC Trends in Analytical Chem. 2016. V. 85. № 4. P. 273-280.
  38. Krebs R.E. The History and Use of Our Earth’s Chemical Elements: A Reference Guide. Greenwood Publishing Group. Westport, 2006. 90 p.
  39. A.C., Ravel B. Abiotic bromination of soil organic matter // Environ. Sci. Technol. 2015. V. 49. № 22. P. 13350-13359.
  40. Lijuan J., Baoliang C. Natural origins, concentration levels, and formation mechanisms of organohalogens in the environment // Progress in Chem. 2017. V. 29. № 9. P. 1093.
  41. Russo M.V., Notardonato I., Rosada A., Ianiri G., Avino P. Halogenated Volatile Organic Compounds in Water Samples and Inorganic Elements Levels in Ores for Characterizing a High Anthropogenic Polluted Area in the Northern Latium Region (Italy) // Int. J. Environ. Res. Public Health. 2021. V. 18. № 4. № article 1628.
  42. Spólnik G., Wach P., Wróbel Z. et al. 2-Iodomalondialdehyde is an abundant component of soluble organic iodine in atmospheric wet precipitation // Sci. Total Environ. 2020. V. 730. № article 139175.
  43. Stockholm Convention on persistent organic pollutions (POPs) (2019) Text and Annexes. http://www.pops.int/TheConvention/Overview/TextoftheConvention/tabid/2232/Default.aspx. Accessed 15 September 2021/
  44. Whitlow S., Mayewski P.A., Dibb J.E. A comparison of major chemical species seasonal concentration and accumulation at the South Pole and Summit // Atmosperic Environment. Pt A. General Topics. Greenland, 1992. V. 26. Is.11. P. 2045-2054.
  45. Xu R., Xie Y., Tian J. et al. Adsorbable organic halogens in contaminated water environment: a review of sources and removal technologies // J. Cleaner Production. 2021. V. 283. № article 124645.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».