Solving the Problem of Groundwater Flow in an Inundated Massif with Vertical Drains
- Authors: Anakhaev K.N.1,2, Belikov V.V.2, Anakhaeva K.K.3, Borisova N.M.2
-
Affiliations:
- Institute of Applied Mathematics and Automation, Kabardin-Balkar Scientific Center, Russian Academy of Sciences (IAMA KBSC RAS), 360000, Nal’chik, KBR, Russia
- Water Problems Institute, Russian Academy of Sciences (WPI RAS), 119333, Moscow, Russia
- Russian University of Transport (RUT (MIIT)), 127994, Moscow, Russia
- Issue: Vol 50, No 3 (2023)
- Pages: 300-307
- Section: ГИДРОФИЗИЧЕСКИЕ ПРОЦЕССЫ
- URL: https://bakhtiniada.ru/0321-0596/article/view/134859
- DOI: https://doi.org/10.31857/S0321059623030021
- EDN: https://elibrary.ru/DESXPZ
- ID: 134859
Cite item
Abstract
The earlier solutions of the problem of groundwater flow in an inundated rock massif with vertically drains (drain trenches) are represented by extremely complex mathematical relationships in complex variables which make them difficult to use in applied problems. A new approximate-hydromechanical solution of the problem was obtained with the use of velocity hodograph and the presentation of model relationships in elementary functions, which coincides with the exact data in boundary points and which are in almost complete agreement (⪡1%) with the results of exact calculations by V.V. Vedernikov for special cases. For the first time, a picture of the field of full flow velocities was analytically constructed in the form of an isotach family for the given inundated massif with drains, showing the heterogeneous character of velocity distribution in it at the presence of water in the drain. Groundwater flow diagrams are also presented for boundary lines (in particular, in comparison with the case when there is no water in the drain), along with plots of flow functions and heads.
About the authors
K. N. Anakhaev
Institute of Applied Mathematics and Automation, Kabardin-Balkar Scientific Center, Russian Academy of Sciences (IAMA KBSC RAS), 360000, Nal’chik, KBR, Russia; Water Problems Institute, Russian Academy of Sciences (WPI RAS), 119333, Moscow, Russia
Email: borisovanm@mail.ru
Россия, 360000, КБР, Нальчик; Россия, 119333, Москва
V. V. Belikov
Water Problems Institute, Russian Academy of Sciences (WPI RAS), 119333, Moscow, Russia
Email: borisovanm@mail.ru
Россия, 119333, Москва
Kh. K. Anakhaeva
Russian University of Transport (RUT (MIIT)), 127994, Moscow, Russia
Email: borisovanm@mail.ru
Россия, 127994 , Москва
N. M. Borisova
Water Problems Institute, Russian Academy of Sciences (WPI RAS), 119333, Moscow, Russia
Author for correspondence.
Email: borisovanm@mail.ru
Россия, 119333, Москва
References
- Анахаев К.Н. Об определении эллиптических функции Якоби // Вестн. РУДН. Сер. Математика, информатика, физика. 2009. № 2. С. 90–95.
- Анахаев К.Н. О расчете потенциальных потоков // ДАН. 2005. Т. 401. № 3. С. 337–341.
- Анахаев К.Н. Строгое решение задачи свободной фильтрации из водотоков полуобратным методом // Прикладна гiдромеханiка. Киев. 2008. Т. 10(82). № 1. С. 80–85.
- Бронштейн И.Н., Семендяев К.А. Справочник по математике. М.: Наука, 1980. 975 с.
- Ведерников В.В. Теория фильтрации и ее применение в области ирригации и дренажа. М.; Л.: Госстройиздат, 1939. 248 с.
- Двайт Г.Б. Таблицы интегралов и другие математические формулы. М.: Наука, 1977. 224 с.
- Лаврик В.И., Савенков В.Н. Справочник по конформным отображениям. Киев: Наук. думка, 1970. 252 с.
- Милн-Томсон Л. Эллиптические интегралы // Справочник по специальным функциям / Под ред. М. Абрамовица, И. Стиган. М.: Наука, 1979. С. 401–441.
- Милн-Томсон Л. Эллиптические функции Якоби тэта-функции // Справочник по специальным функциям / Под ред. М. Абрамовица, И. Стиган. М.: Наука, 1979. С. 380–440.
- Нельсон-Скорняков Ф.Б. Фильтрация в однородной среде. М.: Советская наука, 1949. 568 с.
- Павловский Н.Н. Собрание сочинений. Т. 2. Движение грунтовых вод. М.; Л.: Изд-во АН СССР, 1956. 771 с.
- Фильчаков П.Ф. Справочник по высшей математике. Киев.: Наук. думка, 1973. 743 с.
- Anakhaev K.N. A Contribution to Calculation of the Mathematical Pendulum // Doklady Physics. 2014. V. 59. № 11. P. 528–533.
- Anakhaev K.N. Calculation of free seepage from watercourses with curvilinear profiles // Water Resour. 2007. V. 34. № 3. P. 295–300.
- Donat J. Die Wirkung der Dranungen // Wasserkraft und Wasserwirtschaft. 1936. H. 31. S. 73–77. P. 90–94.
Supplementary files
