Cells that die via AP-3 complex-dependent regulated death pathway support survivors under amino acid deficiency
- Autores: Sokolov S.S.1, Smirnova E.A.1, Kireeva N.A.1, Ksenofontov A.L.1, Tashlitsky V.N.1, Severin F.F.1
-
Afiliações:
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
- Edição: Volume 90, Nº 8 (2025)
- Páginas: 1124-1134
- Seção: Articles
- URL: https://bakhtiniada.ru/0320-9725/article/view/356269
- DOI: https://doi.org/10.31857/S0320972525080049
- EDN: https://elibrary.ru/VBPBHL
- ID: 356269
Citar
Resumo
Palavras-chave
Sobre autores
S. Sokolov
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Email: sviatoslav.sokolov@gmail.com
Moscow
E. Smirnova
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Email: sviatoslav.sokolov@gmail.com
Moscow
N. Kireeva
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Email: sviatoslav.sokolov@gmail.com
Moscow
A. Ksenofontov
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Email: sviatoslav.sokolov@gmail.com
Moscow
V. Tashlitsky
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Email: sviatoslav.sokolov@gmail.com
Moscow
F. Severin
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Email: sviatoslav.sokolov@gmail.com
Moscow
Bibliografia
- Aubin, H.-J., Berlin, I., and Kornreich, C. (2013) The evolutionary puzzle of suicide, Int. J. Environ. Res. Public Health, 10, 6873-6886, https://doi.org/10.3390/ijerph10126873.
- Refardt, D., Bergmiller, T., and Kummerli, R. (2013) Altruism can evolve when relatedness is low: evidence from bacteria committing suicide upon phage infection, Proc. Biol. Sci., 280, 20123035, https://doi.org/10.1098/rspb.2012.3035.
- Berngruber, T. W., Lion, S., and Gandon, S. (2013) Evolution of suicide as a defence strategy against pathogens in a spatially structured environment, Ecol. Lett., 16, 446-453, https://doi.org/10.1111/ele.12064.
- Ramisetty, B. C. M., and Sudhakari, P. A. (2020) "Bacterial Programmed Cell Death": cellular altruism or genetic selfism? FEMS Microbiol. Lett., 367, fnaa141, https://doi.org/10.1093/femsle/fnaa141.
- Popp, P. F., and Mascher, T. (2019) Coordinated cell death in isogenic bacterial populations: Sacrificing some for the benefit of many? J. Mol. Biol., 431, 4656-4669, https://doi.org/10.1016/j.jmb.2019.04.024.
- Van Dyken, J. D., and Zee, P. C. (2024) Disentangling the factors selecting for unicellular programmed cell death, Am. Nat., 204, 468-481, https://doi.org/10.1086/732199.
- Frohlich, K. U., and Madeo, F. (2000) Apoptosis in yeast - a monocellular organism exhibits altruistic behaviour, FEBS Lett, 473, 6-9, https://doi.org/10.1016/s0014-5793(00)01474-5.
- King, A., and Gottlieb, E. (2009) Glucose metabolism and programmed cell death: an evolutionary and mechanistic perspective, Curr. Opin. Cell Biol., 21, 885-893, https://doi.org/10.1016/j.ceb.2009.09.009.
- Dubravcic, D., van Baalen, M., and Nizak, C. (2014) An evolutionarily significant unicellular strategy in response to starvation in Dictyostelium social amoebae, F1000Res., 3, 133, https://doi.org/10.12688/f1000research.4218.2.
- Kireeva, N., Galkina, K., Sokolov, S., and Knorre, D. (2022) Role of dead cells in collective stress tolerance in microbial communities: evidence from yeast, Biochemistry (Moscow), 87, 1528-1534, https://doi.org/10.1134/S0006297922120100.
- Grosfeld, E. V., Bidiuk, V. A., Mitkevich, O. V., Ghazy, E. S. M. O., Kushnirov, V. V., and Alexandrov, A. I. (2021) A systematic survey of characteristic features of yeast cell death triggered by external factors, J. Fungi (Basel), 7, 886, https://doi.org/10.3390/jof7110886.
- Chaves, S. R., Rego, A., Martins, V. M., Santos-Pereira, C., Sousa, M. J., and Corte-Real, M. (2021) Regulation of cell death induced by acetic acid in yeasts, Front. Cell Dev. Biol., 9, 642375, https://doi.org/10.3389/fcell.2021.642375.
- Pyatrikas, D. V., Fedoseeva, I. V., Varakina, N. N., Rusaleva, T. M., Stepanov, A. V., Fedyaeva, A. V., Borovskii, G. B., and Rikhvanov, E. G. (2015) Relation between cell death progression, reactive oxygen species production and mitochondrial membrane potential in fermenting Saccharomyces cerevisiae cells under heat-shock conditions, FEMS Microbiol. Lett., 362, fnv082, https://doi.org/10.1093/femsle/fnv082.
- Phillips, A. J., Sudbery, I., and Ramsdale, M. (2003) Apoptosis induced by environmental stresses and amphotericin B in Candida albicans, Proc. Natl. Acad. Sci. USA, 100, 14327-14332, https://doi.org/10.1073/pnas.2332326100.
- Buttner, S., Eisenberg, T., Herker, E., Carmona-Gutierrez, D., Kroemer, G., and Madeo, F. (2006) Why yeast cells can undergo apoptosis: death in times of peace, love, and war, J. Cell Biol., 175, 521-525, https://doi.org/10.1083/jcb.200608098.
- Rockenfeller, P., and Madeo, F. (2008) Apoptotic death of ageing yeast, Exp. Gerontol., 43, 876-881, https://doi.org/10.1016/j.exger.2008.08.044.
- Fabrizio, P., Battistella, L., Vardavas, R., Gattazzo, C., Liou, L.-L., Diaspro, A., Dossen, J. W., Gralla, E. B., and Longo, V. D. (2004) Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae, J. Cell Biol., 166, 1055-1067, https://doi.org/10.1083/jcb.200404002.
- Eastwood, M. D., Cheung, S. W. T., Lee, K. Y., Moffat, J., and Meneghini, M. D. (2012) Developmentally programmed nuclear destruction during yeast gametogenesis, Dev. Cell, 23, 35-44, https://doi.org/10.1016/j.devcel.2012.05.005.
- Eastwood, M. D., and Meneghini, M. D. (2015) Developmental coordination of gamete differentiation with programmed cell death in sporulating yeast, Eukaryot. Cell, 14, 858-867, https://doi.org/10.1128/EC.00068-15.
- Aram, L., and Arama, E. (2012) Sporoptosis: sowing the seeds of nuclear destruction, Dev. Cell, 23, 5-6, https://doi.org/10.1016/j.devcel.2012.06.016.
- Cowles, C. R., Odorizzi, G., Payne, G. S., and Emr, S. D. (1997) The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole, Cell, 91, 109-118, https://doi.org/10.1016/s0092-8674(01)80013-1.
- Anand, V. C., Daboussi, L., Lorenz, T. C., and Payne, G. S. (2009) Genome-wide analysis of AP-3-dependent protein transport in yeast, Mol. Biol. Cell, 20, 1592-1604, https://doi.org/10.1091/mbc.e08-08-0819.
- Panek, H. R., Stepp, J. D., Engle, H. M., Marks, K. M., Tan, P. K., Lemmon, S. K., and Robinson, L. C. (1997) Suppressors of YCK-encoded yeast casein kinase 1 deficiency define the four subunits of a novel clathrin AP-like complex, EMBO J., 16, 4194-4204, https://doi.org/10.1093/emboj/16.14.4194.
- Sun, B., Chen, L., Cao, W., Roth, A. F., and Davis, N. G. (2004) The yeast casein kinase Yck3p is palmitoylated, then sorted to the vacuolar membrane with AP-3-dependent recognition of a YXXPhi adaptin sorting signal, Mol. Biol. Cell, 15, 1397-1406, https://doi.org/10.1091/mbc.E03-09-0682.
- Stolp, Z. D., Kulkarni, M., Liu, Y., Zhu, C., Jalisi, A., Lin, S., Casadevall, A., Cunningham, K. W., Pineda, F. J., Teng, X., and Hardwick, J. M. (2022) Yeast cell death pathway requiring AP-3 vesicle trafficking leads to vacuole/lysosome membrane permeabilization, Cell Rep., 39, 110647, https://doi.org/10.1016/j.celrep.2022.110647.
- Scherrer, R., Louden, L., and Gerhardt, P. (1974) Porosity of the yeast cell wall and Membrane1, J. Bacteriol., 118, 534-540, https://doi.org/10.1128/jb.118.2.534-540.1974.
- De Nobel, J. G., and Barnett, J. A. (1991) Passage of molecules through yeast cell walls: a brief essay-review, Yeast, 7, 313-323, https://doi.org/10.1002/yea.320070402.
- Eisler, H., Frohlich, K.-U., and Heidenreich, E. (2004) Starvation for an essential amino acid induces apoptosis and oxidative stress in yeast, Exp. Cell Res., 300, 345-353, https://doi.org/10.1016/j.yexcr.2004.07.025.
- Maruyama, Y., Ito, T., Kodama, H., and Matsuura, A. (2016) Availability of amino acids extends chronological lifespan by suppressing hyper-acidification of the environment in Saccharomyces cerevisiae, PLoS One, 11, e0151894, https://doi.org/10.1371/journal.pone.0151894.
- Sherman, F. (2002) Getting started with yeast, In Methods in Enzymology (Guthrie, C., and Fink, G. R., eds) Academic Press, p. 3-41, https://doi.org/10.1016/S0076-6879(02)50954-X.
- Trofimova, L., Ksenofontov, A., Mkrtchyan, G., Graf, A., Baratova, L., and Bunik, V. (2016) Quantification of rat brain amino acids: Analysis of the data consistency, Curr. Anal. Chem., 2, 349-356, https://doi.org/10.2174/1573411011666151006220356.
- Ewald, J. C. (2018) How yeast coordinates metabolism, growth and division, Curr. Opin. Microbiol., 45, 1-7, https://doi.org/10.1016/j.mib.2017.12.012
- Soifer, I., and Barkai, N. (2014) Systematic identification of cell size regulators in budding yeast, Mol. Syst. Biol., 10, 761, https://doi.org/10.15252/msb.20145345.
- Dorsey, S., Tollis, S., Cheng, J., Black, L., Notley, S., Tyers, M., and Royer, C. A. (2018) G1/S transcription factor copy number is a growth-dependent determinant of cell cycle commitment in yeast, Cell Syst., 6, 539-554.e11, https://doi.org/10.1016/j.cels.2018.04.012.
- Friedson, B., and Cooper, K. (2022) Transcriptional role of the Cdk8 kinase module with protein synthesis machinery before and after nitrogen starvation, FASEB J., 36, https://doi.org/10.1096/fasebj.2022.36.S1.L8038.
- Ansari, S. A., and Morse, R. H. (2013) Mechanisms of Mediator complex action in transcriptional activation, Cell. Mol. Life Sci., 70, 2743-2756, https://doi.org/10.1007/s00018-013-1265-9.
- Hanley, S. E., Willis, S. D., Friedson, B., and Cooper, K. F. (2024) Med13 is required for efficient P-body recruitment and autophagic degradation of Edc3 following nitrogen starvation, Mol. Biol. Cell, 35, ar142, https://doi.org/10.1091/mbc.E23-12-0470.
- Hurst, L. R., and Fratti, R. A. (2020) Lipid rafts, sphingolipids, and ergosterol in yeast vacuole fusion and maturation, Front. Cell Dev. Biol., 8, 539, https://doi.org/10.3389/fcell.2020.00539.
- Sokolov, S. S., Vorobeva, M. A., Smirnova, A. I., Smirnova, E. A., Trushina, N. I., Galkina, K. V., Severin, F. F., and Knorre, D. A. (2020) LAM genes contribute to environmental stress tolerance but sensibilize yeast cells to azoles, Front. Microbiol., 11, 38, https://doi.org/10.3389/fmicb.2020.00038.
- Choy, H.L., Gaylord, E.A., and Doering, T.L. (2024) LAMinar flow: Sterol transport in a pathogenic yeast, Contact (Thousand Oaks), 7, 25152564241237625, https://doi.org/10.1177/25152564241237625.
- Sokolov, S. S., Trushina, N. I., Severin, F. F., and Knorre, D. A. (2019) Ergosterol turnover in yeast: an interplay between biosynthesis and transport, Biochemistry (Moscow), 84, 346-357, https://doi.org/10.1134/S0006297919040023.
- Neidhardt, F. C., and Magasanik, B. (1960) Studies on the role of ribonucleic acid in the growth of bacteria, Biochim. Biophys. Acta, 42, 99-116, https://doi.org/10.1016/0006-3002(60)90757-5.
- Burdon, R. H. (1971) Ribonucleic acid maturation in animal cells, Prog. Nucleic Acid Res. Mol. Biol., 11, 33-79, https://doi.org/10.1016/s0079-6603(08)60325-6.
- Huang, H., Kawamata, T., Horie, T., Tsugawa, H., Nakayama, Y., Ohsumi, Y., and Fukusaki, E. (2015) Bulk RNA degradation by nitrogen starvation-induced autophagy in yeast, EMBO J., 34, 154-168, https://doi.org/10.15252/embj.201489083.
- Tanguler, H., and Erten, H. (2008) Utilisation of spent brewer's yeast for yeast extract production by autolysis: the effect of temperature, Food Bioprod. Process., 86, 317-321, https://doi.org/10.1016/j.fbp.2007.10.015.
- Orban, E., Quaglia, G. B., Casini, I., and Moresi, M. (1994) Effect of temperature and yeast concentration on the autolysis of Kluyverommyces fragilis grown on lactose-based media, J. Food Eng., 21, 245-261, https://doi.org/10.1016/0260-8774(94)90190-2.
- Alves, E. M., Souza, J. F., and Oliva Neto, P. (2021) Advances in yeast autolysis technology - a faster and safer new bioprocess, Braz. J. Food Technol., 21, e2020249, https://doi.org/10.1590/1981-6723.24920.
Arquivos suplementares

