GENE ORDER IN MITOCHONDRIAL DNA AFFECTS THE ABUNDANCE OF THEIR TRANSCRIPTS (A CASE OF MARINE NEMATODES)
- Authors: Nikolaeva O.V1, Ovcharenko A.S1,2, Khorkhordina P.V1,2, Miroliubova T.S1,3, Sadovskaya N.S1, Scobeyeva V.A1,2, Sanamyan N.P4, Panina E.G5, Mikhailov K.V1,6, Rusin L.Y.6, Tchesunov A.V1,2, Aleoshin V.V1,2,6
-
Affiliations:
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
- Lomonosov Moscow State University
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences
- Kamchatka Branch of the Pacific Institute of Geography, Far Eastern Branch of the Russian Academy of Sciences
- Zoological Institute, Russian Academy of Sciences
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
- Issue: Vol 90, No 11 (2025)
- Pages: 1843-1861
- Section: Articles
- URL: https://bakhtiniada.ru/0320-9725/article/view/362457
- DOI: https://doi.org/10.7868/S3034529425110195
- ID: 362457
Cite item
Abstract
About the authors
O. V Nikolaeva
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University119234 Moscow, Russia
A. S Ovcharenko
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Lomonosov Moscow State University119234 Moscow, Russia
P. V Khorkhordina
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Lomonosov Moscow State University119234 Moscow, Russia
T. S Miroliubova
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences119234 Moscow, Russia; 119071 Moscow, Russia
N. S Sadovskaya
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University119234 Moscow, Russia
V. A Scobeyeva
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Lomonosov Moscow State University119234 Moscow, Russia
N. P Sanamyan
Kamchatka Branch of the Pacific Institute of Geography, Far Eastern Branch of the Russian Academy of Sciences683000 Petropavlovsk-Kamchatsky, Russia
E. G Panina
Zoological Institute, Russian Academy of Sciences199034 Saint Petersburg, Russia
K. V Mikhailov
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences119234 Moscow, Russia; 127051 Moscow, Russia
L. Yu Rusin
Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences127051 Moscow, Russia
A. V Tchesunov
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Lomonosov Moscow State University119234 Moscow, Russia
V. V Aleoshin
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Lomonosov Moscow State University; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
Email: Aleshin@genebee.msu.su
Correspondence address 119234 Moscow, Russia; 127051 Moscow, Russia
References
- Lavrov, D. V., and Pett, W. (2016) Animal mitochondrial DNA as we do not know it: mt-genome organization and evolution in nonbilaterian lineages, Genome Biol. Evol., 8, 2896-2913, https://doi.org/10.1093/gbe/evw195.
- Pearce, S. F., Rebelo-Guiomar, P., and D′Souza, A. R. (2017) Regulation of mammalian mitochondrial gene expression: recent advances, Trends Biochem. Sci., 42, 625-639, https://doi.org/10.1016/j.tibs.2017.02.003.
- Tan, B. G., Mutti, C. D., Shi, Y., Xie, X., Zhu, X., Silva-Pinheiro, P., Menger, K. E., Díaz-Maldonado, H., Wei, W., Nicholls, T. J., Chinnery, P.F., Minczuk, M., Falkenberg, M., and Gustafsson, C. M. (2022) The human mitochondrial genome contains a second light strand promoter, Mol. Cell, 82, 3646-3660.e9, https://doi.org/10.1016/j.molcel.2022.08.011.
- Falkenberg, M., Larsson, N. G., and Gustafsson, C. M. (2024) Replication and transcription of human mitochondrial DNA, Annu. Rev. Biochem., 93, 47-77, https://doi.org/10.1146/annurev-biochem-052621-092014.
- Barshad, G., Marom, S., Cohen, T., and Mishmar, D. (2018) Mitochondrial DNA transcription and its regulation: an evolutionary perspective, Trends Genet., 34, 682-692, https://doi.org/10.1016/j.tig.2018.05.009.
- Boore, J. L., Daehler, L. L., and Brown, W. M. (1999) Complete sequence, gene arrangement, and genetic code of mitochondrial DNA of the cephalochordate Branchiostoma floridae (Amphioxus), Mol. Biol. Evol., 16, 410-418, https://doi.org/10.1093/oxfordjournals.molbev.a026122.
- Blumberg, A., Rice, E. J., Kundaje, A., Danko, C. G., and Mishmar, D. (2017) Initiation of mtDNA transcription is followed by pausing, and diverges across human cell types and during evolution, Genome Res., 27, 362-373, https://doi.org/10.1101/gr.209924.116.
- Okimoto, R., Macfarlane, J. L., Clary, D. O., and Wolstenholme, D. R. (1992) The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum, Genetics, 130, 471-498, https://doi.org/10.1093/genetics/130.3.471.
- Rossmanith, W. (2012) Of P and Z: mitochondrial tRNA processing enzymes, Biochim. Biophys. Acta, 1819, 1017-1026, https://doi.org/10.1016/j.bbagrm.2011.11.003.
- Ojala, D., Montoya, J., and Attardi, G. (1981) tRNA punctuation model of RNA processing in human mitochondria, Nature, 290, 470-474, https://doi.org/10.1038/290470a0.
- Montoya, J., Ojala, D., and Attardi, G. (1981) Distinctive features of the 5′-terminal sequences of the human mitochondrial mRNAs, Nature, 290, 465-470, https://doi.org/10.1038/290465a0.
- Torres, T. T., Dolezal, M., Schlotterer, C., and Ottenwalder, B. (2009) Expression profiling of Drosophila mitochondrial genes via deep mRNA sequencing, Nucleic Acids Res., 37, 7509-7518, https://doi.org/10.1093/nar/gkp856.
- Nabholz, B., Ellegren, H., and Wolf, J. B. W. (2012) High levels of gene expression explain the strong evolutionary constraint of mitochondrial protein-coding genes, Mol. Biol. Evol., 30, 272-284, https://doi.org/10.1093/molbev/mss238.
- Held, J. P., and Patel, M, R. (2020) Functional conservation of mitochondrial RNA levels despite divergent mtDNA organization, BMC Res. Notes, 13, 334, https://doi.org/10.1186/s13104-020-05177-0.
- Neira-Oviedo, M., Tsyganov-Bodounov, A. G., Lycett, J., Kokoza, V., Raikhel, A. S., and Krzywinski, J. (2011) The RNA-Seq approach to studying the expression of mosquito mitochondrial genes, Insect Mol. Biol., 20, 141-152, https://doi.org/10.1111/j.1365-2583.2010.01053.x.
- Wu, X., Zhan, L., Storey, K. B., Zhang, J., and Yu, D. (2025) Differential mitochondrial genome expression of four skink species under high-temperature stress and selection pressure analyses in Scincidae, Animals (Basel), 15, 999, https://doi.org/10.3390/ani15070999.
- Liu, Q., Xu, S., He, J., Cai, W., Wang, X., and Song, F. (2024) Full-length transcriptome profiling of the complete mitochondrial genome of Sericothrips houjii (Thysanoptera: Thripidae: Sericothripinae) featuring extensive gene rearrangement and duplicated control regions, Insects, 15, 700, https://doi.org/10.3390/insects15090700.
- Singh, T. R., Shneor, O., and Huchon, D. (2008) Bird mitochondrial gene order: insight from 3 warbler mitochondrial genomes, Mol. Biol. Evol., 25, 475-477, https://doi.org/10.1093/molbev/msn003.
- Sun, S., Li, Q., Kong, L., and Yu, H. (2020) Evolution of mitochondrial gene arrangements in Arcidae (Bivalvia: Arcida) and their phylogenetic implications, Mol. Phylogenet. Evol., 150, 106879, https://doi.org/10.1016/j.ympev.2020.106879.
- Kutyumov, V. A., Predeus, A. V., Starunov, V. V., Maltseva, A. L., and Ostrovsky, A. N. (2021) Mitochondrial gene order of the freshwater bryozoan Cristatella mucedo retains ancestral lophotrochozoan features, Mitochondrion, 59, 96-104, https://doi.org/10.1016/j.mito.2021.02.003.
- Wang, T., Zhang, S., Pei, T., Yu, Z., and Liu, J. (2019) Tick mitochondrial genomes: structural characteristics and phylogenetic implications, Parasit. Vectors, 12, 451, https://doi.org/10.1186/s13071-019-3705-3.
- Griggio, F., Voskoboynik, A., Iannelli, F., Justy, F., Tilak, M. K., Turon, X., Pesole, G., Douzery, E.J., Mastrototaro, F., and Gissi, C. (2014) Ascidian mitogenomics: comparison of evolutionary rates in closely related taxa provides evidence of ongoing speciation events, Genome Biol. Evol., 6, 591-605, https://doi.org/10.1093/gbe/evu041.
- Liu, Q., Cai, Y. D., Ma, L., Liu, H., Linghu, T., Guo, S., Wei, S., Song, F., Tian, L., Cai, W., and Li, H. (2023) Relaxed purifying selection pressure drives accelerated and dynamic gene rearrangements in thrips (Insecta: Thysanoptera) mitochondrial genomes, Int. J. Biol. Macromol., 253, 126742, https://doi.org/10.1016/j.ijbiomac.2023.126742.
- Bernt, M., Bleidorn, C., Braband, A., Dambach, J., Donath A., Fritzsch, G., Golombek, A., Hadrys, H., Jühling, F., Meusemann, K., Middendorf, M., Misof, B., Perseke, M., Podsiadlowski, L., von Reumont, B., Schierwater, B., Schlegel, M., Schrödl, M., Simon, S., Stadler, P. F., Stöger, I., and Struck, T. H. (2013) A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny, Mol. Phylogenet. Evol., 69, 352-364, https://doi.org/10.1016/j.ympev.2013.05.002.
- Dowton, M., Cameron, S. L., Dowavic, J. I., Austin, A. D., and Whiting, M. F. (2009) Characterization of 67 mitochondrial tRNA gene rearrangements in the Hymenoptera suggests that mitochondrial tRNA gene position is selectively neutral, Mol. Biol. Evol., 26, 1607-1617, https://doi.org/10.1093/molbev/msp072.
- Popova, O. V., Mikhailov, K. V., Nikitin, M. A., Logacheva, M. D., Penin, A. A., Muntyan, M. S., Kedrova, O. S., Petrov, N. B., Panchin, Y. V., and Aleoshin, V. V. (2016) Mitochondrial genomes of Kinorhyncha: trnM duplication and new gene orders within animals, PLoS One, 11, e0165072, https://doi.org/10.1371/journal.pone.0165072.
- Weigert, A., Golombek, A., Gerth, M., Schwarz, F., Struck, T. H., and Bleidorn, C. (2016) Evolution of mitochondrial gene order in Annelida, Mol. Phylogenet. Evol., 94, 196-206, https://doi.org/10.1016/j.ympev.2015.08.008.
- Kang, H., Li, B., Ma, X., and Xu, Y. (2018) Evolutionary progression of mitochondrial gene rearrangements and phylogenetic relationships in Strigidae (Strigiformes), Gene, 674, 8-14, https://doi.org/10.1016/j.gene.2018.06.066.
- Kern, E. M. A., Kim, T., and Park, J.‐K. (2020) The mitochondrial genome in nematode phylogenetics, Front. Ecol. Evol., 8, 250, https://doi.org/10.3389/fevo.2020.00250.
- Lee, Y. C., Ke, H. M., Liu, Y. C., Lee, H. H., Wang, M. C., Tseng, Y. C., Kikuchi, T., and Tsai, I. J. (2023) Single-worm long-read sequencing reveals genome diversity in free-living nematodes, Nucleic Acids Res., 51, 8035-8047, https://doi.org/10.1093/nar/gkad647.
- Greenslade, P., and Nicholas, W. L. (1991) Some Thoracostomopsidae (Nematoda: Enoplida) from Australia, including descriptions of two new genera and diagnostic keys, Invertebr. Syst., 4, 1031-1052, https://doi.org/10.1071/IT9901031.
- Zograf, J. K., Efimova, K. V., and Mordukhovich, V. (2025) Integrative descriptions of two new Thoracostomopsidae species (Nematoda, Enoplida) with the brief discussion on nematode spicules origin, Zool. Anz., 319, 50-69, https://doi.org/10.1016/j.jcz.2025.08.012.
- Souza, J. V., and Maria, T. F. (2023) Taxonomic review of Thoracostomopsidae (Nematoda, Enoplida): state of the art, list of valid species and dichotomous keys, Zootaxa, 5361, 463-496, https://doi.org/10.11646/zootaxa.5361.4.2.
- Tchesunov, A. V., Nikolaeva, O. V., Rusin, L. Y., Sanamyan, N. P., Panina, E. G., Miljutin, D. M., Gorelysheva, D. I., Pegova, A. N., Khromova, M. R., Mardashova, M. V., Mikhailov, K. V., Yushin, V. V., Petrov, N. B., Lyubetsky, V. A., Nikitin, M. A., and Aleoshin, V. V. (2023) Paraphyly of Marimermithida refines primary routes of transition to parasitism in roundworms, Zool. J. Linn, Soc., 197, 909-923, https://doi.org/10.1093/zoolinnean/zlac070.
- Meng, Z., Liang, H., and Wang, C. (2025) Phylogenetic analysis within Monhysteridae and Thoracostomopsidae based on rDNA sequences and two new species from the Yellow Sea, China, Zoosyst. Evol., 101, 1339-1358, doi: 10.3897/zse.101.154881.
- Smythe, A. B., Holovachov, O., and Kocot, K. M. (2019) Improved phylogenomic sampling of free-living nematodes enhances resolution of higher-level nematode phylogeny, BMC Evol. Biol., 19, 121, https://doi.org/10.1186/s12862-019-1444-x.
- Andrews, S. (2010) FastQC: a quality control tool for high throughput sequence data, Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
- Bolger, A. M., Lohse, M., and Usadel, B. (2014) Trimmomatic: a flexible trimmer for illumina sequence data, Bioinformatics, 30, 2114-2120, https://doi.org/10.1093/bioinformatics/btu170.
- Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., and Pevzner, P. A. (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing, J. Comput. Biol., 19, 455-477, https://doi.org/10.1089/cmb.2012.0021.
- Altschul, S. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389-3402, https://doi.org/10.1093/nar/25.17.3389.
- Dierckxsens, N., Mardulyn, P., and Smits, G. (2017) NOVOPlasty: de novo assembly of organelle genomes from whole genome data, Nucleic Acids Res., 45, e18, https://doi.org/10.1093/nar/gkw955.
- Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M., and Stadler, P. F. (2013) MITOS: improved de novo metazoan mitochondrial genome annotation, Mol. Phylogenet. Evol., 69, 313-319, https://doi.org/10.1016/j.ympev.2012.08.023.
- Langmead, B., and Salzberg, S. L. (2012) Fast gapped-read alignment with bowtie 2, Nat. Methods, 9, 357-359, https://doi.org/10.1038/nmeth.1923.
- Milne, I., Stephen, G., Bayer, M., Cock, P. J., Pritchard, L., Cardle, L., Shaw, P. D., and Marshall, D. (2013) Using Tablet for visual exploration of second-generation sequencing data, Brief Bioinform., 14, 193-202, https://doi.org/10.1093/bib/bbs012.
- Quinlan, A. R., and Hall, I. M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics, 26, 841-842, https://doi.org/10.1093/bioinformatics/btq033.
- Li, B., and Dewey, C.N. (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome, BMC Bioinformatics, 12, 323, https://doi.org/10.1186/1471-2105-12-323.
- Katoh, K., and Standley, D. M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 30, 772-780, https://doi.org/10.1093/molbev/mst010.
- Hall, T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 41, 95-98.
- Nguyen, L. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol. Biol. Evol., 32, 268-274, https://doi.org/10.1093/molbev/msu300.
- Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space, Syst. Biol., 61, 539-542, https://doi.org/10.1093/sysbio/sys029.
- Schwarz, G. (1978) Estimating the dimension of a model, Ann. Statist., 6, 461-464, https://doi.org/10.1214/aos/1176344136.
- Kumar, S., Stecher, G., and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Mol. Biol. Evol., 33, 1870-1874, https://doi.org/10.1093/molbev/msw054.
- Smythe, A. B. (2015) Evolution of feeding structures in the marine nematode order Enoplida, Integr. Comp. Biol., 55, 228-240, doi: 10.1093/icb/icv043.
- Jeong, R., Tchesunov, A. V., and Lee, W. (2020) Two species of Thoracostomopsidae (Nematoda: Enoplida) from Jeju Island, South Korea, PeerJ, 8, e9037, https://doi.org/10.7717/peerj.9037.
- Gao, S., Rena, Y., Suna, Y., Wub, Z., Ruan, J., He, B., Zhang, T., Yu, X., Tian, X., and Bu, W. (2016) PacBio fulllength transcriptome profiling of insect mitochondrial gene expression, RNA Biol., 13, 820-825, https://doi.org/10.1080/15476286.2016.1197481.
- Araujo, N. S., and Arias, M. C. (2019) Mitochondrial genome characterization of Melipona bicolor: Insights from the control region and gene expression data, Gene, 705, 55-59, https://doi.org/10.1016/j.gene.2019.04.042.
- Nikolaeva, O. V., Beregova, A. M., Efeykin, B. D., Miroliubova, T. S., Zhuravlev, A. Y., Ivantsov, A. Y., Mikhailov, K. V., Spiridonov, S. E., and Aleoshin, V. V. (2023) Expression of hairpin-enriched mitochondrial DNA in two hairworm species (Nematomorpha), Int. J. Mol. Sci., 24, 11411, https://doi.org/10.3390/ijms241411411.
- Lee, K. W., Okot-Kotber, C., LaComb, J. F., and Bogenhagen, D. F. (2013) Mitochondrial ribosomal RNA (rRNA) methyltransferase family members are positioned to modify nascent rRNA in foci near the mitochondrial DNA nucleoid, J. Biol. Chem., 288, 31386-31399, https://doi.org/10.1074/jbc.M113.515692.
- Jedynak-Slyvka, M., Jabczynska, A., and Szczesny, R. J. (2021) Human mitochondrial RNA processing and modifications: overview, Int. J. Mol. Sci., 22, 7999, https://doi.org/10.3390/ijms22157999.
- She, H., Yang, Q., Shepherd, K., Smith, Y., Miller, G., Testa, C., and Mao, Z. (2011) Direct regulation of complex I by mitochondrial MEF2D is disrupted in a mouse model of Parkinson disease and in human patients, J. Clin. Invest., 121, 930-940, https://doi.org/10.1172/JCI43871.
- Blumberg, A., Sailaja, B. S., Kundaje, A., Levin, L., Dadon, S., Shmorak, S., Shaulian, E., Meshorer, E., and Mishmar, D. (2014) Transcription factors bind negatively-selected sites within human mtDNA genes, Genome Biol. Evol., 6, 2634-2646, https://doi.org/10.1093/gbe/evu210.
- Dong, D. W., Pereira, F., Barrett, S. P., Kolesar, J. E., Cao, K., Damas, J., Yatsunyk, L. A., Johnson, F. B., and Kaufman, B. A. (2014) Association of G-quadruplex forming sequences with human mtDNA deletion breakpoints, BMC Genomics, 15, 677, https://doi.org/10.1186/1471-2164-15-677.
- Butler, T. J., Estep, K. N., Sommers, J. A., Maul, R. W., Moore, A. Z., Bandinelli, S., Cucca, F., Tuke, M. A., Wood, A. R., Bharti, S. K., Bogenhagen, D. F., Yakubovskaya, E., Garcia-Diaz, M., Guilliam, T. A., Byrd, A. K., Raney, K. D., Doherty, A. J., Ferrucci, L., Schlessinger, D., Ding, J., and Brosh, R. M. (2020) Mitochondrial genetic variation is enriched in G-quadruplex regions that stall DNA synthesis in vitro, Hum. Mol. Genet., 29, 1292-1309, https://doi.org/10.1093/HMG/DDAA043.
- Chatterjee, A., Seyfferth, J., Lucci, J., Gilsbach, R., Preissl, S., Böttinger, L., Mårtensson, C. U., Panhale, A., Stehle, T., Kretz, O., Sahyoun, A. H., Avilov, S., Eimer, S., Hein, L., Pfanner, N., Becker, T., and Akhtar, A. (2016) MOF Acetyl transferase regulates transcription and respiration in mitochondria, Cell, 167, 722-738.e23, https://doi.org/10.1016/j.cell.2016.09.052.
- Doimo, M., Chaudhari, N., Abrahamsson, S., L’Hôte, V., Nguyen, T. V. H., Berner, A., Ndi, M., Abrahamsson, A., Das, R. N., Aasumets, K., Goffart, S., Pohjoismäki, J. L. O., López, M. D., Chorell, E., and Wanrooij, S. (2023) Enhanced mitochondrial G-quadruplex formation impedes replication fork progression leading to mtDNA loss in human cells, Nucleic Acids Res., 51, 7392-7408, https://doi.org/10.1093/nar/gkad535.
- Falabella, M., Kolesar, J. E., Wallace, C., De Jesus, D., Sun, L., Taguchi, Y. V., Wang, C., Wang, T., Xiang, I. M., Alder, J. K., Maheshan, R., Horne, W., Turek-Herman, J., Pagano, P. J., St Croix, C. M., Sondheimer, N., Yatsunyk, L. A., Johnson, F. B., and Kaufman, B. A. (2019) G-quadruplex dynamics contribute to regulation of mitochondrial gene expression, Sci. Rep., 9, 5605, https://doi.org/10.1038/s41598-019-41464-y.
- Mishmar, D., Levin, R., Naeem, M. M., and Sondheimer, N. (2019) Higher order organization of the mtDNA: beyond mitochondrial transcription factor A, Front. Genet., 10, 1285, https://doi.org/10.3389/fgene.2019.01285.
- Bratic, A., Clemente, P., Calvo-Garrido, J., Maffezzini, C., Felser, A., Wibom, R., Wedell, A., Freyer, C., and Wredenberg, A. (2016) Mitochondrial polyadenylation is a one-step process required for mRNA integrity and tRNA maturation, PLoS Genet., 12, e1006028, https://doi.org/10.1371/journal.pgen.1006028.
- Krüger, A., Remes, C., Shiriaev, D. I., Liu, Y., Spåhr, H., Wibom, R., Atanassov, I., Nguyen, M. D., Cooperman, B. S., and Rorbach, J. (2023) Human mitochondria require mtRF1 for translation termination at non-canonical stop codons, Nat. Commun., 14, 30, https://doi.org/10.1038/s41467-022-35684-6.
- Singh, V., Moran, J. C., Itoh, Y., Soto, I. C., Fontanesi, F., Couvillion, M., Huynen, M. A., Churchman, L. S., Barrientos, A., and Amunts, A. (2024) Structural basis of LRPPRC-SLIRP-dependent translation by the mitoribosome, Nat. Struct. Mol. Biol., 31, 1838-1847, https://doi.org/10.1038/s41594-024-01365-9.
- Ruzzenente, B., Metodiev, M. D., Wredenberg, A., Bratic, A., Park, C. B., Cámara, Y., Milenkovic, D., Zickermann, V., Wibom, R., Hultenby, K., Erdjument-Bromage, H., Tempst, P., Brandt, U., Stewart, J. B., Gustafsson, C. M., and Larsson, N. G. (2012) LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs, EMBO J., 31, 443-456, https://doi.org/10.1038/emboj.2011.392.
- Siira, S. J., Spåhr, H., Shearwood, A. M. J., Ruzzenente, B., Larsson, N. G., Rackham, O., and Filipovska, A. (2017) LRPPRC-mediated folding of the mitochondrial transcriptome, Nat. Commun., 8, 1532, https://doi.org/10.1038/s41467-017-01221-z.
- Chang, J. H., and Tong, L. (2012) Mitochondrial poly (A) polymerase and polyadenylation, Biochim. Biophys. Acta, 1819, 992-997, https://doi.org/10.1016/j.bbagrm.2011.10.012.
- Honarmand, S., and Shoubridge, E. A. (2020) Poly (A) tail length of human mitochondrial mRNAs is tissuespecific and a mutation in LRPPRC results in transcript-specific patterns of deadenylation, Mol. Genet. Metab. Rep., 25, 100687, https://doi.org/10.1016/j.ymgmr.2020.100687.
- Temperley, R. J., Wydro, M., Lightowlers, R. N., and Chrzanowska-Lightowlers, Z. M. (2010) Human mitochondrial mRNAs-like members of all families, similar but different, Biochim. Biophys. Acta, 1797, 1081-1085, https://doi.org/10.1016/j.bbabio.2010.02.036.
- Moran, J. C., Brivanlou, A., Brischigliaro, M., Fontanesi, F., Rouskin, S., and Barrientos, A. (2024) The human mitochondrial mRNA structurome reveals mechanisms of gene expression, Science, 385, eadm9238, https:// doi.org/10.1126/science.adm9238.
Supplementary files


