GENE ORDER IN MITOCHONDRIAL DNA AFFECTS THE ABUNDANCE OF THEIR TRANSCRIPTS (A CASE OF MARINE NEMATODES)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Mitochondrial genomes of most animals contain the same set of genes, with all or many protein-coding genes (PCGs) arranged in the same order, forming conserved blocks termed syntenies. Some syntenies have been preserved for hundreds of millions of years and are found in both vertebrates and invertebrates. This evolutionary conservation indicates a functional role for PCG arrangement; however, the biochemical and/or physiological mechanisms by which gene order in mtDNA affects viability are unknown. Among animals, there are taxa that have completely lost conserved syntenies in mtDNA. Canonical animal syntenies in mtDNA had not been reported in nematodes, until some were recently discovered in previously unstudied nematode taxa, including the marine family Thoracostomopsidae (Nematoda, Enoplida). We sequenced the complete mitochondrial genomes of three thoracostomopsid species, determined the gene order and their expression levels from RNA-seq data integrated for the family representatives in all available databases. It was found that six species of the Thoracostomopsidae reveal three distinct patterns of PCG arrangement, where relative mRNA levels correlate with gene order rather than species phylogeny. We hypothesize that the influence of PCG translocations on their expression levels underlies the long-term preservation of mitochondrial syntenies among animals.

About the authors

O. V Nikolaeva

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119234 Moscow, Russia

A. S Ovcharenko

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Lomonosov Moscow State University

119234 Moscow, Russia

P. V Khorkhordina

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Lomonosov Moscow State University

119234 Moscow, Russia

T. S Miroliubova

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

119234 Moscow, Russia; 119071 Moscow, Russia

N. S Sadovskaya

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119234 Moscow, Russia

V. A Scobeyeva

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Lomonosov Moscow State University

119234 Moscow, Russia

N. P Sanamyan

Kamchatka Branch of the Pacific Institute of Geography, Far Eastern Branch of the Russian Academy of Sciences

683000 Petropavlovsk-Kamchatsky, Russia

E. G Panina

Zoological Institute, Russian Academy of Sciences

199034 Saint Petersburg, Russia

K. V Mikhailov

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences

119234 Moscow, Russia; 127051 Moscow, Russia

L. Yu Rusin

Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences

127051 Moscow, Russia

A. V Tchesunov

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Lomonosov Moscow State University

119234 Moscow, Russia

V. V Aleoshin

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Lomonosov Moscow State University; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences

Email: Aleshin@genebee.msu.su
Correspondence address 119234 Moscow, Russia; 127051 Moscow, Russia

References

  1. Lavrov, D. V., and Pett, W. (2016) Animal mitochondrial DNA as we do not know it: mt-genome organization and evolution in nonbilaterian lineages, Genome Biol. Evol., 8, 2896-2913, https://doi.org/10.1093/gbe/evw195.
  2. Pearce, S. F., Rebelo-Guiomar, P., and D′Souza, A. R. (2017) Regulation of mammalian mitochondrial gene expression: recent advances, Trends Biochem. Sci., 42, 625-639, https://doi.org/10.1016/j.tibs.2017.02.003.
  3. Tan, B. G., Mutti, C. D., Shi, Y., Xie, X., Zhu, X., Silva-Pinheiro, P., Menger, K. E., Díaz-Maldonado, H., Wei, W., Nicholls, T. J., Chinnery, P.F., Minczuk, M., Falkenberg, M., and Gustafsson, C. M. (2022) The human mitochondrial genome contains a second light strand promoter, Mol. Cell, 82, 3646-3660.e9, https://doi.org/10.1016/j.molcel.2022.08.011.
  4. Falkenberg, M., Larsson, N. G., and Gustafsson, C. M. (2024) Replication and transcription of human mitochondrial DNA, Annu. Rev. Biochem., 93, 47-77, https://doi.org/10.1146/annurev-biochem-052621-092014.
  5. Barshad, G., Marom, S., Cohen, T., and Mishmar, D. (2018) Mitochondrial DNA transcription and its regulation: an evolutionary perspective, Trends Genet., 34, 682-692, https://doi.org/10.1016/j.tig.2018.05.009.
  6. Boore, J. L., Daehler, L. L., and Brown, W. M. (1999) Complete sequence, gene arrangement, and genetic code of mitochondrial DNA of the cephalochordate Branchiostoma floridae (Amphioxus), Mol. Biol. Evol., 16, 410-418, https://doi.org/10.1093/oxfordjournals.molbev.a026122.
  7. Blumberg, A., Rice, E. J., Kundaje, A., Danko, C. G., and Mishmar, D. (2017) Initiation of mtDNA transcription is followed by pausing, and diverges across human cell types and during evolution, Genome Res., 27, 362-373, https://doi.org/10.1101/gr.209924.116.
  8. Okimoto, R., Macfarlane, J. L., Clary, D. O., and Wolstenholme, D. R. (1992) The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum, Genetics, 130, 471-498, https://doi.org/10.1093/genetics/130.3.471.
  9. Rossmanith, W. (2012) Of P and Z: mitochondrial tRNA processing enzymes, Biochim. Biophys. Acta, 1819, 1017-1026, https://doi.org/10.1016/j.bbagrm.2011.11.003.
  10. Ojala, D., Montoya, J., and Attardi, G. (1981) tRNA punctuation model of RNA processing in human mitochondria, Nature, 290, 470-474, https://doi.org/10.1038/290470a0.
  11. Montoya, J., Ojala, D., and Attardi, G. (1981) Distinctive features of the 5′-terminal sequences of the human mitochondrial mRNAs, Nature, 290, 465-470, https://doi.org/10.1038/290465a0.
  12. Torres, T. T., Dolezal, M., Schlotterer, C., and Ottenwalder, B. (2009) Expression profiling of Drosophila mitochondrial genes via deep mRNA sequencing, Nucleic Acids Res., 37, 7509-7518, https://doi.org/10.1093/nar/gkp856.
  13. Nabholz, B., Ellegren, H., and Wolf, J. B. W. (2012) High levels of gene expression explain the strong evolutionary constraint of mitochondrial protein-coding genes, Mol. Biol. Evol., 30, 272-284, https://doi.org/10.1093/molbev/mss238.
  14. Held, J. P., and Patel, M, R. (2020) Functional conservation of mitochondrial RNA levels despite divergent mtDNA organization, BMC Res. Notes, 13, 334, https://doi.org/10.1186/s13104-020-05177-0.
  15. Neira-Oviedo, M., Tsyganov-Bodounov, A. G., Lycett, J., Kokoza, V., Raikhel, A. S., and Krzywinski, J. (2011) The RNA-Seq approach to studying the expression of mosquito mitochondrial genes, Insect Mol. Biol., 20, 141-152, https://doi.org/10.1111/j.1365-2583.2010.01053.x.
  16. Wu, X., Zhan, L., Storey, K. B., Zhang, J., and Yu, D. (2025) Differential mitochondrial genome expression of four skink species under high-temperature stress and selection pressure analyses in Scincidae, Animals (Basel), 15, 999, https://doi.org/10.3390/ani15070999.
  17. Liu, Q., Xu, S., He, J., Cai, W., Wang, X., and Song, F. (2024) Full-length transcriptome profiling of the complete mitochondrial genome of Sericothrips houjii (Thysanoptera: Thripidae: Sericothripinae) featuring extensive gene rearrangement and duplicated control regions, Insects, 15, 700, https://doi.org/10.3390/insects15090700.
  18. Singh, T. R., Shneor, O., and Huchon, D. (2008) Bird mitochondrial gene order: insight from 3 warbler mitochondrial genomes, Mol. Biol. Evol., 25, 475-477, https://doi.org/10.1093/molbev/msn003.
  19. Sun, S., Li, Q., Kong, L., and Yu, H. (2020) Evolution of mitochondrial gene arrangements in Arcidae (Bivalvia: Arcida) and their phylogenetic implications, Mol. Phylogenet. Evol., 150, 106879, https://doi.org/10.1016/j.ympev.2020.106879.
  20. Kutyumov, V. A., Predeus, A. V., Starunov, V. V., Maltseva, A. L., and Ostrovsky, A. N. (2021) Mitochondrial gene order of the freshwater bryozoan Cristatella mucedo retains ancestral lophotrochozoan features, Mitochondrion, 59, 96-104, https://doi.org/10.1016/j.mito.2021.02.003.
  21. Wang, T., Zhang, S., Pei, T., Yu, Z., and Liu, J. (2019) Tick mitochondrial genomes: structural characteristics and phylogenetic implications, Parasit. Vectors, 12, 451, https://doi.org/10.1186/s13071-019-3705-3.
  22. Griggio, F., Voskoboynik, A., Iannelli, F., Justy, F., Tilak, M. K., Turon, X., Pesole, G., Douzery, E.J., Mastrototaro, F., and Gissi, C. (2014) Ascidian mitogenomics: comparison of evolutionary rates in closely related taxa provides evidence of ongoing speciation events, Genome Biol. Evol., 6, 591-605, https://doi.org/10.1093/gbe/evu041.
  23. Liu, Q., Cai, Y. D., Ma, L., Liu, H., Linghu, T., Guo, S., Wei, S., Song, F., Tian, L., Cai, W., and Li, H. (2023) Relaxed purifying selection pressure drives accelerated and dynamic gene rearrangements in thrips (Insecta: Thysanoptera) mitochondrial genomes, Int. J. Biol. Macromol., 253, 126742, https://doi.org/10.1016/j.ijbiomac.2023.126742.
  24. Bernt, M., Bleidorn, C., Braband, A., Dambach, J., Donath A., Fritzsch, G., Golombek, A., Hadrys, H., Jühling, F., Meusemann, K., Middendorf, M., Misof, B., Perseke, M., Podsiadlowski, L., von Reumont, B., Schierwater, B., Schlegel, M., Schrödl, M., Simon, S., Stadler, P. F., Stöger, I., and Struck, T. H. (2013) A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny, Mol. Phylogenet. Evol., 69, 352-364, https://doi.org/10.1016/j.ympev.2013.05.002.
  25. Dowton, M., Cameron, S. L., Dowavic, J. I., Austin, A. D., and Whiting, M. F. (2009) Characterization of 67 mitochondrial tRNA gene rearrangements in the Hymenoptera suggests that mitochondrial tRNA gene position is selectively neutral, Mol. Biol. Evol., 26, 1607-1617, https://doi.org/10.1093/molbev/msp072.
  26. Popova, O. V., Mikhailov, K. V., Nikitin, M. A., Logacheva, M. D., Penin, A. A., Muntyan, M. S., Kedrova, O. S., Petrov, N. B., Panchin, Y. V., and Aleoshin, V. V. (2016) Mitochondrial genomes of Kinorhyncha: trnM duplication and new gene orders within animals, PLoS One, 11, e0165072, https://doi.org/10.1371/journal.pone.0165072.
  27. Weigert, A., Golombek, A., Gerth, M., Schwarz, F., Struck, T. H., and Bleidorn, C. (2016) Evolution of mitochondrial gene order in Annelida, Mol. Phylogenet. Evol., 94, 196-206, https://doi.org/10.1016/j.ympev.2015.08.008.
  28. Kang, H., Li, B., Ma, X., and Xu, Y. (2018) Evolutionary progression of mitochondrial gene rearrangements and phylogenetic relationships in Strigidae (Strigiformes), Gene, 674, 8-14, https://doi.org/10.1016/j.gene.2018.06.066.
  29. Kern, E. M. A., Kim, T., and Park, J.‐K. (2020) The mitochondrial genome in nematode phylogenetics, Front. Ecol. Evol., 8, 250, https://doi.org/10.3389/fevo.2020.00250.
  30. Lee, Y. C., Ke, H. M., Liu, Y. C., Lee, H. H., Wang, M. C., Tseng, Y. C., Kikuchi, T., and Tsai, I. J. (2023) Single-worm long-read sequencing reveals genome diversity in free-living nematodes, Nucleic Acids Res., 51, 8035-8047, https://doi.org/10.1093/nar/gkad647.
  31. Greenslade, P., and Nicholas, W. L. (1991) Some Thoracostomopsidae (Nematoda: Enoplida) from Australia, including descriptions of two new genera and diagnostic keys, Invertebr. Syst., 4, 1031-1052, https://doi.org/10.1071/IT9901031.
  32. Zograf, J. K., Efimova, K. V., and Mordukhovich, V. (2025) Integrative descriptions of two new Thoracostomopsidae species (Nematoda, Enoplida) with the brief discussion on nematode spicules origin, Zool. Anz., 319, 50-69, https://doi.org/10.1016/j.jcz.2025.08.012.
  33. Souza, J. V., and Maria, T. F. (2023) Taxonomic review of Thoracostomopsidae (Nematoda, Enoplida): state of the art, list of valid species and dichotomous keys, Zootaxa, 5361, 463-496, https://doi.org/10.11646/zootaxa.5361.4.2.
  34. Tchesunov, A. V., Nikolaeva, O. V., Rusin, L. Y., Sanamyan, N. P., Panina, E. G., Miljutin, D. M., Gorelysheva, D. I., Pegova, A. N., Khromova, M. R., Mardashova, M. V., Mikhailov, K. V., Yushin, V. V., Petrov, N. B., Lyubetsky, V. A., Nikitin, M. A., and Aleoshin, V. V. (2023) Paraphyly of Marimermithida refines primary routes of transition to parasitism in roundworms, Zool. J. Linn, Soc., 197, 909-923, https://doi.org/10.1093/zoolinnean/zlac070.
  35. Meng, Z., Liang, H., and Wang, C. (2025) Phylogenetic analysis within Monhysteridae and Thoracostomopsidae based on rDNA sequences and two new species from the Yellow Sea, China, Zoosyst. Evol., 101, 1339-1358, doi: 10.3897/zse.101.154881.
  36. Smythe, A. B., Holovachov, O., and Kocot, K. M. (2019) Improved phylogenomic sampling of free-living nematodes enhances resolution of higher-level nematode phylogeny, BMC Evol. Biol., 19, 121, https://doi.org/10.1186/s12862-019-1444-x.
  37. Andrews, S. (2010) FastQC: a quality control tool for high throughput sequence data, Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
  38. Bolger, A. M., Lohse, M., and Usadel, B. (2014) Trimmomatic: a flexible trimmer for illumina sequence data, Bioinformatics, 30, 2114-2120, https://doi.org/10.1093/bioinformatics/btu170.
  39. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., and Pevzner, P. A. (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing, J. Comput. Biol., 19, 455-477, https://doi.org/10.1089/cmb.2012.0021.
  40. Altschul, S. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389-3402, https://doi.org/10.1093/nar/25.17.3389.
  41. Dierckxsens, N., Mardulyn, P., and Smits, G. (2017) NOVOPlasty: de novo assembly of organelle genomes from whole genome data, Nucleic Acids Res., 45, e18, https://doi.org/10.1093/nar/gkw955.
  42. Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M., and Stadler, P. F. (2013) MITOS: improved de novo metazoan mitochondrial genome annotation, Mol. Phylogenet. Evol., 69, 313-319, https://doi.org/10.1016/j.ympev.2012.08.023.
  43. Langmead, B., and Salzberg, S. L. (2012) Fast gapped-read alignment with bowtie 2, Nat. Methods, 9, 357-359, https://doi.org/10.1038/nmeth.1923.
  44. Milne, I., Stephen, G., Bayer, M., Cock, P. J., Pritchard, L., Cardle, L., Shaw, P. D., and Marshall, D. (2013) Using Tablet for visual exploration of second-generation sequencing data, Brief Bioinform., 14, 193-202, https://doi.org/10.1093/bib/bbs012.
  45. Quinlan, A. R., and Hall, I. M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics, 26, 841-842, https://doi.org/10.1093/bioinformatics/btq033.
  46. Li, B., and Dewey, C.N. (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome, BMC Bioinformatics, 12, 323, https://doi.org/10.1186/1471-2105-12-323.
  47. Katoh, K., and Standley, D. M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 30, 772-780, https://doi.org/10.1093/molbev/mst010.
  48. Hall, T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 41, 95-98.
  49. Nguyen, L. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol. Biol. Evol., 32, 268-274, https://doi.org/10.1093/molbev/msu300.
  50. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space, Syst. Biol., 61, 539-542, https://doi.org/10.1093/sysbio/sys029.
  51. Schwarz, G. (1978) Estimating the dimension of a model, Ann. Statist., 6, 461-464, https://doi.org/10.1214/aos/1176344136.
  52. Kumar, S., Stecher, G., and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Mol. Biol. Evol., 33, 1870-1874, https://doi.org/10.1093/molbev/msw054.
  53. Smythe, A. B. (2015) Evolution of feeding structures in the marine nematode order Enoplida, Integr. Comp. Biol., 55, 228-240, doi: 10.1093/icb/icv043.
  54. Jeong, R., Tchesunov, A. V., and Lee, W. (2020) Two species of Thoracostomopsidae (Nematoda: Enoplida) from Jeju Island, South Korea, PeerJ, 8, e9037, https://doi.org/10.7717/peerj.9037.
  55. Gao, S., Rena, Y., Suna, Y., Wub, Z., Ruan, J., He, B., Zhang, T., Yu, X., Tian, X., and Bu, W. (2016) PacBio fulllength transcriptome profiling of insect mitochondrial gene expression, RNA Biol., 13, 820-825, https://doi.org/10.1080/15476286.2016.1197481.
  56. Araujo, N. S., and Arias, M. C. (2019) Mitochondrial genome characterization of Melipona bicolor: Insights from the control region and gene expression data, Gene, 705, 55-59, https://doi.org/10.1016/j.gene.2019.04.042.
  57. Nikolaeva, O. V., Beregova, A. M., Efeykin, B. D., Miroliubova, T. S., Zhuravlev, A. Y., Ivantsov, A. Y., Mikhailov, K. V., Spiridonov, S. E., and Aleoshin, V. V. (2023) Expression of hairpin-enriched mitochondrial DNA in two hairworm species (Nematomorpha), Int. J. Mol. Sci., 24, 11411, https://doi.org/10.3390/ijms241411411.
  58. Lee, K. W., Okot-Kotber, C., LaComb, J. F., and Bogenhagen, D. F. (2013) Mitochondrial ribosomal RNA (rRNA) methyltransferase family members are positioned to modify nascent rRNA in foci near the mitochondrial DNA nucleoid, J. Biol. Chem., 288, 31386-31399, https://doi.org/10.1074/jbc.M113.515692.
  59. Jedynak-Slyvka, M., Jabczynska, A., and Szczesny, R. J. (2021) Human mitochondrial RNA processing and modifications: overview, Int. J. Mol. Sci., 22, 7999, https://doi.org/10.3390/ijms22157999.
  60. She, H., Yang, Q., Shepherd, K., Smith, Y., Miller, G., Testa, C., and Mao, Z. (2011) Direct regulation of complex I by mitochondrial MEF2D is disrupted in a mouse model of Parkinson disease and in human patients, J. Clin. Invest., 121, 930-940, https://doi.org/10.1172/JCI43871.
  61. Blumberg, A., Sailaja, B. S., Kundaje, A., Levin, L., Dadon, S., Shmorak, S., Shaulian, E., Meshorer, E., and Mishmar, D. (2014) Transcription factors bind negatively-selected sites within human mtDNA genes, Genome Biol. Evol., 6, 2634-2646, https://doi.org/10.1093/gbe/evu210.
  62. Dong, D. W., Pereira, F., Barrett, S. P., Kolesar, J. E., Cao, K., Damas, J., Yatsunyk, L. A., Johnson, F. B., and Kaufman, B. A. (2014) Association of G-quadruplex forming sequences with human mtDNA deletion breakpoints, BMC Genomics, 15, 677, https://doi.org/10.1186/1471-2164-15-677.
  63. Butler, T. J., Estep, K. N., Sommers, J. A., Maul, R. W., Moore, A. Z., Bandinelli, S., Cucca, F., Tuke, M. A., Wood, A. R., Bharti, S. K., Bogenhagen, D. F., Yakubovskaya, E., Garcia-Diaz, M., Guilliam, T. A., Byrd, A. K., Raney, K. D., Doherty, A. J., Ferrucci, L., Schlessinger, D., Ding, J., and Brosh, R. M. (2020) Mitochondrial genetic variation is enriched in G-quadruplex regions that stall DNA synthesis in vitro, Hum. Mol. Genet., 29, 1292-1309, https://doi.org/10.1093/HMG/DDAA043.
  64. Chatterjee, A., Seyfferth, J., Lucci, J., Gilsbach, R., Preissl, S., Böttinger, L., Mårtensson, C. U., Panhale, A., Stehle, T., Kretz, O., Sahyoun, A. H., Avilov, S., Eimer, S., Hein, L., Pfanner, N., Becker, T., and Akhtar, A. (2016) MOF Acetyl transferase regulates transcription and respiration in mitochondria, Cell, 167, 722-738.e23, https://doi.org/10.1016/j.cell.2016.09.052.
  65. Doimo, M., Chaudhari, N., Abrahamsson, S., L’Hôte, V., Nguyen, T. V. H., Berner, A., Ndi, M., Abrahamsson, A., Das, R. N., Aasumets, K., Goffart, S., Pohjoismäki, J. L. O., López, M. D., Chorell, E., and Wanrooij, S. (2023) Enhanced mitochondrial G-quadruplex formation impedes replication fork progression leading to mtDNA loss in human cells, Nucleic Acids Res., 51, 7392-7408, https://doi.org/10.1093/nar/gkad535.
  66. Falabella, M., Kolesar, J. E., Wallace, C., De Jesus, D., Sun, L., Taguchi, Y. V., Wang, C., Wang, T., Xiang, I. M., Alder, J. K., Maheshan, R., Horne, W., Turek-Herman, J., Pagano, P. J., St Croix, C. M., Sondheimer, N., Yatsunyk, L. A., Johnson, F. B., and Kaufman, B. A. (2019) G-quadruplex dynamics contribute to regulation of mitochondrial gene expression, Sci. Rep., 9, 5605, https://doi.org/10.1038/s41598-019-41464-y.
  67. Mishmar, D., Levin, R., Naeem, M. M., and Sondheimer, N. (2019) Higher order organization of the mtDNA: beyond mitochondrial transcription factor A, Front. Genet., 10, 1285, https://doi.org/10.3389/fgene.2019.01285.
  68. Bratic, A., Clemente, P., Calvo-Garrido, J., Maffezzini, C., Felser, A., Wibom, R., Wedell, A., Freyer, C., and Wredenberg, A. (2016) Mitochondrial polyadenylation is a one-step process required for mRNA integrity and tRNA maturation, PLoS Genet., 12, e1006028, https://doi.org/10.1371/journal.pgen.1006028.
  69. Krüger, A., Remes, C., Shiriaev, D. I., Liu, Y., Spåhr, H., Wibom, R., Atanassov, I., Nguyen, M. D., Cooperman, B. S., and Rorbach, J. (2023) Human mitochondria require mtRF1 for translation termination at non-canonical stop codons, Nat. Commun., 14, 30, https://doi.org/10.1038/s41467-022-35684-6.
  70. Singh, V., Moran, J. C., Itoh, Y., Soto, I. C., Fontanesi, F., Couvillion, M., Huynen, M. A., Churchman, L. S., Barrientos, A., and Amunts, A. (2024) Structural basis of LRPPRC-SLIRP-dependent translation by the mitoribosome, Nat. Struct. Mol. Biol., 31, 1838-1847, https://doi.org/10.1038/s41594-024-01365-9.
  71. Ruzzenente, B., Metodiev, M. D., Wredenberg, A., Bratic, A., Park, C. B., Cámara, Y., Milenkovic, D., Zickermann, V., Wibom, R., Hultenby, K., Erdjument-Bromage, H., Tempst, P., Brandt, U., Stewart, J. B., Gustafsson, C. M., and Larsson, N. G. (2012) LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs, EMBO J., 31, 443-456, https://doi.org/10.1038/emboj.2011.392.
  72. Siira, S. J., Spåhr, H., Shearwood, A. M. J., Ruzzenente, B., Larsson, N. G., Rackham, O., and Filipovska, A. (2017) LRPPRC-mediated folding of the mitochondrial transcriptome, Nat. Commun., 8, 1532, https://doi.org/10.1038/s41467-017-01221-z.
  73. Chang, J. H., and Tong, L. (2012) Mitochondrial poly (A) polymerase and polyadenylation, Biochim. Biophys. Acta, 1819, 992-997, https://doi.org/10.1016/j.bbagrm.2011.10.012.
  74. Honarmand, S., and Shoubridge, E. A. (2020) Poly (A) tail length of human mitochondrial mRNAs is tissuespecific and a mutation in LRPPRC results in transcript-specific patterns of deadenylation, Mol. Genet. Metab. Rep., 25, 100687, https://doi.org/10.1016/j.ymgmr.2020.100687.
  75. Temperley, R. J., Wydro, M., Lightowlers, R. N., and Chrzanowska-Lightowlers, Z. M. (2010) Human mitochondrial mRNAs-like members of all families, similar but different, Biochim. Biophys. Acta, 1797, 1081-1085, https://doi.org/10.1016/j.bbabio.2010.02.036.
  76. Moran, J. C., Brivanlou, A., Brischigliaro, M., Fontanesi, F., Rouskin, S., and Barrientos, A. (2024) The human mitochondrial mRNA structurome reveals mechanisms of gene expression, Science, 385, eadm9238, https:// doi.org/10.1126/science.adm9238.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».