CYSTEINE CATHEPSINS AND DRUG DISCOVERY: WHAT WE KNOW AND WHAT WE SHOULD KNOW
- Authors: Zamyatnin A.A1,2,3
-
Affiliations:
- Lomonosov Moscow State University
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
- Sechenov First Moscow State Medical University
- Issue: Vol 90, No 11 (2025)
- Pages: 1879-1886
- Section: Discussion
- URL: https://bakhtiniada.ru/0320-9725/article/view/362459
- DOI: https://doi.org/10.7868/S3034529425110211
- ID: 362459
Cite item
Abstract
About the authors
A. A Zamyatnin
Lomonosov Moscow State University; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Sechenov First Moscow State Medical University
Email: zamyat@belozersky.msu.ru
119234 Moscow, Russia; 119992 Moscow, Russia; 119991 Moscow, Russia
References
- Willstätter, R., and Bannann, E. (1929) On the proteases of the gastric mucosa. First treatise on the enzymes of leukocytes [in German], Hoppe Seylers Z. Physiol. Chemie, 180, 127-143.
- Turk, V., Stoka, V., Vasiljeva, O., Renko, M., Sun, T., Turk, B., and Turk, D. (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers, Biochim. Biophys. Acta, 1824, 68-88, https://doi.org/10.1016/j.bbapap.2011.10.002.
- Rawlings, N. D., Barrett, A. J., Thomas, P. D., Huang, X., Bateman, A., and Finn, R. D. (2018) The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database, Nucleic Acids Res., 46, D624-D632, https://doi.org/10.1093/nar/gkr987.
- Drake, F. H., Dodds, R. A., James, I. E., Connor, J. R., Debouck, C., Richardson, S., Lee-Rykaczewski, E., Coleman, L., Rieman, D., Barthlow, R., Hastings, G., and Gowen, M. (1996) Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts, J. Biol. Chem., 271, 12511-12516, https://doi.org/10.1074/jbc.271.21.12511.
- Panwar, P., Olesen, J. B., Blum, G., Delaisse, J. M., See, K., and Brömme, D. (2024) Real-time analysis of osteoclast resorption and fusion dynamics in response to bone resorption inhibitors, Sci. Rep., 14, 7358, https://doi.org/10.1038/s41598-024-57526-9.
- Goulet, B., Baruch, A., Moon, N. S., Poirier, M., Sansregret, L. L., Erickson, A., Bogyo, M., and Nepveu, A. (2004) A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor, Mol. Cell, 14, 207-219, https://doi.org/10.1016/j.molcel.2004.02.036.
- Duncan, E. M., Muratore-Schroeder, T. L., Cook, R. G., Garcia, B. A., Shabanowitz, J., Hunt, D. F., and Allis, C. D. (2008) Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation, Cell, 135, 284-294, https://doi.org/10.1016/j.cell.2008.09.055.
- Soond, S. M., Savvateeva, L. V., Makarov, V. A., Gorokhovets, N. V., Townsend, P. A., and Zamyatnin, A. A. Jr. (2021) Cathepsin S cleaves BAX as a novel and therapeutically important regulatory mechanism for apoptosis, Pharmaceutics, 13, 339, https://doi.org/10.3390/pharmaceutics13030339.
- Yasothornsrikul, S., Greenbaum, D., Medzihradszky, K. F., Toneff, T., Bundey, R., Miller, R., Schilling, B., Petermann, I., Dehnert, J., Logvinova, A., Goldsmith, P., Neveu, J. M., Lane, W. S., Gibson, B., Reinheckel, T., Peters, C., Bogyo, M., and Hook, V. (2003) Cathepsin L in secretory vesicles functions as a prohormone-processing enzyme for production of the enkephalin peptide neurotransmitter, Proc. Natl. Acad. Sci. USA, 100, 9590-9595, https://doi.org/10.1073/pnas.1531542100.
- Hook, V., Yasothornsrikul, S., Greenbaum, D., Medzihradszky, K. F., Troutner, K., Toneff, T., Bundey, R., Logvinova, A., Reinheckel, T., Peters, C., and Bogyo, M. (2004) Cathepsin L and Arg/Lys aminopeptidase: a distinct prohormone processing pathway for the biosynthesis of peptide neurotransmitters and hormones, Biol. Chem., 385, 473-480, https://doi.org/10.1515/BC.2004.055.
- Wang, B., Sun, J., Kitamoto, S., Yang, M., Grubb, A., Chapman, H. A., Kalluri, R., and Shi, G. P. (2006) Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors, J. Biol. Chem., 281, 6020-6029, https://doi.org/10.1074/jbc.M509134200.
- Fonovic, U. P., Jevnikar, Z., and Kos, J. (2013) Cathepsin S generates soluble CX3CL1 (fractalkine) in vascular smooth muscle cells, Biol. Chem., 394, 1349-1352, https://doi.org/10.1515/hsz-2013-0189.
- Gocheva, V., Zeng, W., Ke, D., Klimstra, D., Reinheckel, T., Peters, C., Hanahan, D., and Joyce, J. A. (2006) Distinct roles for cysteine cathepsin genes in multistage tumorigenesis, Genes Dev., 20, 543-556, https://doi.org/10.1101/gad.1407406.
- Zhu, L., Zeng, Q., Wang, J., Deng, F., and Jin, S. (2023) Cathepsin V drives lung cancer progression by shaping the immunosuppressive environment and adhesion molecules cleavage, Aging (Albany NY), 15, 13961-13979, https://doi.org/10.18632/aging.205278.
- Panwar, P., Hedtke, T., Heinz, A., Andrault, P. M., Hoebenwarter, W., Granville, D. J., Schmelzer, C. E. H., and Brömme, D. (2020) Expression of elastolytic cathepsins in human skin and their involvement in age-dependent elastin degradation, Biochim. Biophys. Acta Gen. Subj., 1864, 129544, https://doi.org/10.1016/j.bbagen.2020.129544.
- Pečar Fonovic, U., Kos, J., and Mitrović, A. (2024) Compensational role between cathepsins, Biochimie, 226, 62-76, https://doi.org/10.1016/j.biochi.2024.04.010.
- Petushkova, A. I., Savvateeva, L. V., Korolev, D. O., and Zamyatnin, A. A. Jr. (2019) Cysteine cathepsins: potential applications in diagnostics and therapy of malignant tumors, Biochemistry (Moscow), 84, 746-761, https://doi.org/10.1134/S000629791907006X.
- Biasizzo, M., Javoršek, U., Vidak, E., Zarić, M., and Turk, B. (2022) Cysteine cathepsins: A long and winding road towards clinics, Mol. Aspects Med., 88, 101150, https://doi.org/10.1016/j.mam.2022.101150.
- Eastell, R., Dijk, D. J., Small, M., Greenwood, A., Sharpe, J., Yamada, H., Yuba, M., Tanimoto, M., and Deacon, S. (2016) Morning vs evening dosing of the cathepsin K inhibitor ONO-5334: effects on bone resorption in postmenopausal women in a randomized, phase 1 trial, Osteoporos. Int., 27, 309-318, https://doi.org/10.1007/s00198-015-3342-4.
- Brixen, K., Chapurlat, R., Cheung, A. M., Keaveny, T. M., Fuerst, T., Engelke, K., Recker, R., Dardzinski, B., Verbruggen, N., Ather, S., Rosenberg, E., and de Papp, A. E. (2013) Bone density, turnover, and estimated strength in postmenopausal women treated with odanacatib: a randomized trial, J. Clin. Endocrinol. Metab., 98, 571-580, https://doi.org/10.1210/jc.2012-2972.
- Engelke, K., Fuerst, T., Dardzinski, B., Kornak, J., Ather, S., Genant, H. K., and de Papp, A. (2015) Odanacatib treatment affects trabecular and cortical bone in the femur of postmenopausal women: results of a two-year placebo-controlled trial, J. Bone Miner. Res., 30, 30-38, https://doi.org/10.1002/jbmr.2292.
- Rudzińska, M., Parodi, A., Maslova, V. D., Efremov, Y. M., Gorokhovets, N. V., Makarov, V. A., Popkov, V. A., Golovin, A. V., Zernii, E. Y., and Zamyatnin, A. A. Jr. (2020) Cysteine cathepsins inhibition affects their expression and human renal cancer cell phenotype, Cancers, 12, 1310, https://doi.org/10.3390/cancers12051310.
- Petushkova, A. I., Savvateeva, L. V., and Zamyatnin, A. A. Jr. (2022) Structure determinants defining the specificity of papain-like cysteine proteases, Comput. Struct. Biotechnol. J., 20, 6552-6569, https://doi.org/10.1016/j.csbj.2022.11.040.
- Rudzinska, M., Parodi, A., Soond, S. M., Vinarov, A. Z., Korolev, D. O., Morozov, A. O., Daglioglu, C., Tutar, Y., and Zamyatnin, A. A. Jr. (2019) The role of cysteine cathepsins in cancer progression and drug resistance, Int. J. Mol. Sci., 20, 3602, https://doi.org/10.3390/ijms20143602.
- Vizovisek, M., Vidak, E., Javorsek, U., Mikhailov, G., Bratovs, A., and Turk, B. (2020) Cysteine cathepsins as therapeutic targets in inflammatory diseases, Expert Opin. Ther. Targets, 24, 573-588, https://doi.org/10.1080/14728222.2020.1746765.
- Senjor, E., Kos, J., and Nanut, M. P. (2023) Cysteine cathepsins as therapeutic targets in immune regulation and immune disorders, Biomedicines, 11, 476, https://doi.org/10.3390/biomedicines11020476.
- Frolova, A. S., Tikhomirova, N. K., Kireev, I. I., Zernii, E. Y., Parodi, A., Ivanov, K. I., and Zamyatnin, A. A. Jr. (2023) Expression, intracellular localization, and maturation of cysteine cathepsins in renal embryonic and cancer cell lines, Biochemistry (Moscow), 88, 1034-1044, https://doi.org/10.1134/S0006297923070143.
- Rudzinska-Radecka, M., Frolova, A. S., Balakireva, A. V., Gorokhovets, N. V., Pokrovsky, V. S., Sokolova, D. V., Korolev, D. O., Potoldykova, N. V., Vinarov, A. Z., Parodi, A., and Zamyatnin, A. A. Jr. (2022) In silico, in vitro, and clinical investigations of cathepsin B and stefin A mRNA expression and a correlation analysis in kidney cancer, Cells, 11, 1455, https://doi.org/10.3390/cells11091455.
- Jean, D., Rousselet, N., and Frade, R. (2006) Expression of cathepsin L in human tumor cells is under the control of distinct regulatory mechanisms, Oncogene, 25, 1474-1484, https://doi.org/10.1038/sj.onc.1209196.
- Ye, J., Stefan-Lifshitz, M., and Tomer, Y. (2021) Genetic and environmental factors regulate the type 1 diabetes gene CTSH via differential DNA methylation, J. Biol. Chem., 296, 100774, https://doi.org/10.1016/j.jbc.2021.100774.
- Wang, X., Li, X., Lin, F., Sun, H., Lin, Y., Wang, Z., and Wang, X. (2021) The Inc-CTSLP8 upregulates CTSL1 as a competitive endogenous RNA and promotes ovarian cancer metastasis, J. Exp. Clin. Cancer Res., 40, 151, https://doi.org/10.1186/s13046-021-01957-z.
- Li, H., Zheng, F., Tao, A., Wu, T., Zhan, X., Tang, H., Cui, X., Ma, Z., Li, C., Jiang, J., and Wang, Y. (2025) LncRNA H19 promotes osteoclast differentiation by sponging miR-29c-3p to increase expression of cathepsin K, Bone, 192, 117340, https://doi.org/10.1016/j.bone.2024.117340.
- Yan, W., Feng, Y., Lei, Z., Kuang, W., and Long, C. (2022) MicroRNA-214-3p ameliorates LPS-induced cardiomyocyte injury by inhibiting cathepsin B, Folia Biol. (Praha), 68, 78-85, https://doi.org/10.14712/fb2022068020078.
- Ma, H., Ou, Z. L., Alaeilikhchi, N., Cheng, Y. Q., Chen, K., Chen, J. Y., Guo, R. Q., He, M. Y., Tang, S. Y., Zhang, X., Huang, Z. P., Liu, J., Liu, J., Zhu, Q. A., Huang, Z. C., and Jiang, H. (2024) MiR-223 enhances lipophagy by suppressing CTSB in microglia following lysolecithin-induced demyelination in mice, Lipids Health Dis., 23, 194, https://doi.org/10.1186/s12944-024-02185-y.
- Soond, S. M., Kozhevnikova, M. V., Townsend, P. A., and Zamyatnin, A. A. Jr. (2020) Integrative p53, micro-RNA and cathepsin protease co-regulatory expression networks in cancer, Cancers, 12, 3454, https://doi.org/10.3390/cancers12113454.
- Reinheckel, T., and Tholen, M. (2022) Low-level lysosomal membrane permeabilization for limited release and sublethal functions of cathepsin proteases in the cytosol and nucleus, FEBS Open Bio, 12, 694-707, https://doi.org/10.1002/2211-5463.13385.
- Soond, S. M., Kozhevnikova, M. V., Frolova, A. S., Savvateeva, L. V., Plotnikov, E. Y., Townsend, P. A., Han, Y. P., and Zamyatnin, A. A. Jr. (2019) Lost or forgotten: the nuclear cathepsin protein isoforms in cancer, Cancer Lett., 462, 43-50, https://doi.org/10.1016/j.canlet.2019.07.020.
- Enneking, A. E., Khorey, M. M., and Edgington-Mitchell, L. E. (2025) Nuclear roles for canonically lysosomal proteases, Mol. Cell Biol., 240, 343-352, https://doi.org/10.1080/10985549.2025.2519158.
- Verma, S., Dixit, R., and Pandey, K. C. (2016) Cysteine proteases: modes of activation and future prospects as pharmacological targets, Front. Pharmacol., 7, 107, https://doi.org/10.3389/fphar.2016.00107.
- Gorokhovets, N. V., Makarov, V. A., Petushkova, A. I., Prokopets, O. S., Rubtsov, M. A., Savvateeva, L. V., Zernii, E. Y., and Zamyatnin, A. A. Jr. (2017) Rational design of recombinant papain-like cysteine protease: optimal domain structure and expression conditions for wheat-derived enzyme triticain-α, Int. J. Mol. Sci., 18, 1395, https://doi.org/10.3390/ijms18071395.
- Pungercar, J. R., Caglic, D., Sajid, M., Dolinar, M., Vasilieva, O., Pozgan, U., Turk, D., Bogyo, M., Turk, V., and Turk, B. (2009) Autocatalytic processing of procathepsin B is triggered by proenzyme activity, FEBS J., 276, 660-668, https://doi.org/10.1111/j.1742-4658.2008.06815.x.
- Tušar, L., Loboda, J., Impens, F., Sosnowski, P., Van Quickelberghe, E., Vidmar, R., Demol, H., Sedeyn, K., Saelens, X., Vizovisek, M., Mihelić, M., Fonović, M., Horvat, J., Kosec, G., Turk, B., Gevaert, K., and Turk, D. (2023) Proteomic data and structure analysis combined reveal interplay of structural rigidity and flexibility on selectivity of cysteine cathepsins, Commun. Biol., 6, 450, https://doi.org/10.1038/s42003-023-04772-8.
- Gallwitz, L., Bleibaum, F., Voss, M., Schweizer, M., Spengler, K., Winter, D., Zöphel, F., Müller, S., Lichtenthaler, S., Damme, M., and Saftig, P. (2024) Cellular depletion of major cathepsin proteases reveals their concerted activities for lysosomal proteolysis, Cell. Mol. Life Sci., 81, 227, https://doi.org/10.1007/s00018-024-05274-4.
- Xun, J., and Tan, J. X. (2025) Lysosomal repair in health and disease, J. Cell. Physiol., 240, e70044, https://doi.org/10.1002/jcp.70044.
Supplementary files


