LONG NON-CODING RNA JPX: STRUCTURE, FUNCTIONS, AND ROLE IN CHROMATIN ARCHITECTURE
- Authors: Selivanovskiy A.V1,2,3, Sivkina A.L1, Ulianov S.V1,2, Razin S.V1,2
-
Affiliations:
- Institute of Gene Biology, Russian Academy of Sciences
- Moscow Institute of Physics and Technology
- Lomonosov Moscow State University
- Issue: Vol 90, No 11 (2025)
- Pages: 1670-1688
- Section: Articles
- URL: https://bakhtiniada.ru/0320-9725/article/view/362446
- DOI: https://doi.org/10.7868/S3034529425110095
- ID: 362446
Cite item
Abstract
About the authors
A. V Selivanovskiy
Institute of Gene Biology, Russian Academy of Sciences; Moscow Institute of Physics and Technology; Lomonosov Moscow State University119334 Moscow, Russia; 141700 Dolgoprudny, Russia; 119234 Moscow, Russia
A. L Sivkina
Institute of Gene Biology, Russian Academy of Sciences119334 Moscow, Russia
S. V Ulianov
Institute of Gene Biology, Russian Academy of Sciences; Moscow Institute of Physics and Technology119334 Moscow, Russia; 141700 Dolgoprudny, Russia
S. V Razin
Institute of Gene Biology, Russian Academy of Sciences; Moscow Institute of Physics and Technology
Email: sergey.vrazin@inbox.ru
119334 Moscow, Russia; 141700 Dolgoprudny, Russia
References
- Palihati, M., and Saitoh, N. (2024) RNA in chromatin organization and nuclear architecture, Curr. Opin. Genet. Dev., 86, 102176, https://doi.org/10.1016/j.gde.2024.102176.
- Liang, W.-W., Müller, S., Hart, S. K., Wessels, H.-H., Méndez-Mancilla, A., Sookdeo, A., Choi, O., Caragine, C. M., Corman, A., Lu, L., Kolumba, O., Williams, B., and Sanjana, N. E. (2024) Transcriptome-scale RNA-targeting CRISPR screens reveal essential lncRNAs in human cells, Cell, 187, 7637-7654.e29, https://doi.org/10.1016/j.cell.2024.10.021.
- Statello, L., Guo, C.-J., Chen, L.-L., and Huarte, M. (2021) Gene regulation by long non-coding RNAs and its biological functions, Nat. Rev. Mol. Cell Biol., 22, 96-118, https://doi.org/10.1038/s41580-020-00315-9.
- Ferrer, J., and Dimitrova, N. (2024) Transcription regulation by long non-coding RNAs: mechanisms and disease relevance, Nat. Rev. Mol. Cell Biol., 25, 396-415, https://doi.org/10.1038/s41580-023-00694-9.
- Mattick, J. S., Amaral, P. P., Carninci, P., Carpenter, S., Chang, H. Y., Chen, L.-L., Chen, R., Dean, C., Dinger, M. E., Fitzgerald, K. A., Gingeras, T. R., Guttman, M., Hirose, T., Huarte, M., Johnson, R., Kanduri, C., Kapranov, P., Lawrence, J. B., Lee, J. T., Mendell, J. T., Mercer, T. R., Moore, K. J., Nakagawa, S., Rinn, J. L., Spector, D. L., Ulitsky, I., Wan, Y., Wilusz, J. E., and Wu, M. (2023) Long non-coding RNAs: definitions, functions, challenges and recommendations, Nat. Rev. Mol. Cell Biol., 24, 430-447, https://doi.org/10.1038/s41580-022-00566-8.
- Ghafouri-Fard, S., and Taheri, M. (2019) Nuclear Enriched Abundant Transcript 1 (NEAT1): a long non-coding RNA with diverse functions in tumorigenesis, Biomed. Pharmacother., 111, 51-59, https://doi.org/10.1016/j.biopha.2018.12.070.
- Arun, G., Aggarwal, D., and Spector, D. L. (2020) MALAT1 long non-coding RNA: functional implications, Non-Coding RNA, 6, 22, https://doi.org/10.3390/ncrna6020022.
- Nojima, T., and Proudfoot, N. J. (2022) Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics, Nat. Rev. Mol. Cell Biol., 23, 389-406, https://doi.org/10.1038/s41580-021-00447-6.
- Chen, L.-L., and Kim, V. N. (2024) Small and long non-coding RNAs: past, present, and future, Cell, 187, 6451-6485, https://doi.org/10.1016/j.cell.2024.10.024.
- Deveson, I. W., Brunck, M. E., Blackburn, J., Tseng, E., Hon, T., Clark, T. A., Clark, M. B., Crawford, J., Dinger, M. E., Nielsen, L. K., Mattick, J. S., and Mercer, T. R. (2018) Universal alternative splicing of noncoding exons, Cell Syst., 6, 245-255.e5, https://doi.org/10.1016/j.cels.2017.12.005.
- Jégu, T., Blum, R., Cochrane, J. C., Yang, L., Wang, C.-Y., Gilles, M.-E., Colognori, D., Szanto, A., Marr, S. K., Kingston, R. E., and Lee, J. T. (2019) Xist RNA antagonizes the SWI/SNF chromatin remodeler BRG1 on the inactive X chromosome, Nat. Struct. Mol. Biol., 26, 96-109, https://doi.org/10.1038/s41594-018-0176-8.
- Chu, H.-P., Cifuentes-Rojas, C., Kesner, B., Aeby, E., Lee, H., Wei, C., Oh, H. J., Boukhali, M., Haas, W., and Lee, J. T. (2017) TERRA RNA antagonizes ATRX and protects telomeres, Cell, 170, 86-101.e16, https://doi.org/10.1016/j.cell.2017.06.017.
- Daneshvar, K., Ardehali, M. B., Klein, I. A., Hsieh, F.-K., Kratkiewicz, A. J., Mahpour, A., Cancelliere, S. O. L., Zhou, C., Cook, B. M., Li, W., Pondick, J. V., Gupta, S. K., Moran, S. P., Young, R. A., Kingston, R. E., and Mullen, A. C. (2020) lncRNA DIGIT and BRD3 protein form phase-separated condensates to regulate endoderm differentiation, Nat. Cell Biol., 22, 1211-1222, https://doi.org/10.1038/s41556-020-0572-2.
- Beltran, M., Tavares, M., Justin, N., Khandelwal, G., Ambrose, J., Foster, B. M., Worlock, K. B., Tvardovskiy, A., Kunzelmann, S., Herrero, J., Bartke, T., Gamblin, S. J., Wilson, J. R., and Jenner, R. G. (2019) G-tract RNA removes Polycomb repressive complex 2 from genes, Nat. Struct. Mol. Biol., 26, 899-909, https://doi.org/10.1038/s41594-019-0293-z.
- Tsagakis, I., Douka, K., Birds, I., and Aspden, J. L. (2020) Long non‐coding RNAs in development and disease: conservation to mechanisms, J. Pathol., 250, 480-495, https://doi.org/10.1002/path.5405.
- Islam, Z., Saravanan, B., Walavalkar, K., Farooq, U., Singh, A. K., Radhakrishnan, S., Thakur, J., Pandit, A., Henikoff, S., and Notani, D. (2023) Active enhancers strengthen insulation by RNA-mediated CTCF binding at chromatin domain boundaries, Genome Res., 33, 1-17, https://doi.org/10.1101/gr.276643.122.
- Ren, C., Han, H., Pan, J., Chang, Q., Wang, W., Guo, X., and Bian, J. (2022) DLGAP1-AS2 promotes human colorectal cancer progression through trans-activation of Myc, Mamm. Genome, 33, 672-683, https://doi.org/10.1007/s00335-022-09963-y.
- Tsai, P.-F., Dell’Orso, S., Rodriguez, J., Vivanco, K. O., Ko, K.-D., Jiang, K., Juan, A. H., Sarshad, A. A., Vian, L., Tran, M., Wangsa, D., Wang, A. H., Perovanovic, J., Anastasakis, D., Ralston, E., Ried, T., Sun, H.-W., Hafner, M., Larson, D. R., and Sartorelli, V. (2018) A muscle-specific enhancer RNA mediates cohesin recruitment and regulates transcription in trans, Mol. Cell, 71, 129-141.e8, https://doi.org/10.1016/j.molcel.2018.06.008.
- Abdalla, M. O. A., Yamamoto, T., Maehara, K., Nogami, J., Ohkawa, Y., Miura, H., Poonperm, R., Hiratani, I., Nakayama, H., Nakao, M., and Saitoh, N. (2019) The Eleanor ncRNAs activate the topological domain of the ESR1 locus to balance against apoptosis, Nat. Commun., 10, 3778, https://doi.org/10.1038/s41467-019-11378-4.
- Yeo, S. J., Ying, C., Fullwood, M. J., and Tergaonkar, V. (2023) Emerging regulatory mechanisms of noncoding RNAs in topologically associating domains, Trends Genet., 39, 217-232, https://doi.org/10.1016/j.tig.2022.12.003.
- Quinodoz, S. A., Jachowicz, J. W., Bhat, P., Ollikainen, N., Banerjee, A. K., Goronzy, I. N., Blanco, M. R., Chovanec, P., Chow, A., Markaki, Y., Thai, J., Plath, K., and Guttman, M. (2021) RNA promotes the formation of spatial compartments in the nucleus, Cell, 184, 5775-5790.e30, https://doi.org/10.1016/j.cell.2021.10.014.
- Loda, A., Collombet, S., and Heard, E. (2022) Gene regulation in time and space during X-chromosome inactivation, Nat. Rev. Mol. Cell Biol., 23, 231-249, https://doi.org/10.1038/s41580-021-00438-7.
- Winkler, L., Jimenez, M., Zimmer, J. T., Williams, A., Simon, M. D., and Dimitrova, N. (2022) Functional elements of the cis-regulatory lincRNA-p21, Cell Rep., 39, 110687, https://doi.org/10.1016/j.celrep.2022.110687.
- Engreitz, J. M., Haines, J. E., Perez, E. M., Munson, G., Chen, J., Kane, M., McDonel, P. E., Guttman, M., and Lander, E. S. (2016) Local regulation of gene expression by lncRNA promoters, transcription and splicing, Nature, 539, 452-455, https://doi.org/10.1038/nature20149.
- Gil, N., Perry, R. B.-T., Mukamel, Z., Tuck, A., Bühler, M., and Ulitsky, I. (2023) Complex regulation of Eomes levels mediated through distinct functional features of the Meteor long non-coding RNA locus, Cell Rep., 42, 112569, https://doi.org/10.1016/j.celrep.2023.112569.
- Carrieri, C., Cimatti, L., Biagioli, M., Beugnet, A., Zucchelli, S., Fedele, S., Pesce, E., Ferrer, I., Collavin, L., Santoro, C., Forrest, A. R. R., Carninci, P., Biffo, S., Stupka, E., and Gustincich, S. (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat, Nature, 491, 454-457, https://doi.org/10.1038/nature11508.
- Schein, A., Zucchelli, S., Kauppinen, S., Gustincich, S., and Carninci, P. (2016) Identification of antisense long noncoding RNAs that function as SINEUPs in human cells, Sci. Rep., 6, 33605, https://doi.org/10.1038/srep33605.
- Cesana, M., Cacchiarelli, D., Legnini, I., Santini, T., Sthandier, O., Chinappi, M., Tramontano, A., and Bozzoni, I. (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA, Cell, 147, 358-369, https://doi.org/10.1016/j.cell.2011.09.028.
- Grelet, S., Link, L. A., Howley, B., Obellianne, C., Palanisamy, V., Gangaraju, V. K., Diehl, J. A., and Howe, P. H. (2017) A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression, Nat. Cell Biol., 19, 1105-1115, https://doi.org/10.1038/ncb3595.
- Wang, Y., Xu, Z., Jiang, J., Xu, C., Kang, J., Xiao, L., Wu, M., Xiong, J., Guo, X., and Liu, H. (2013) Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal, Dev. Cell, 25, 69-80, https://doi.org/10.1016/j.devcel.2013.03.002.
- Xia, Q., Shen, J., Wang, Q., Ke, Y., Yan, Q., Li, H., Zhang, D., and Duan, S. (2022) LINC00324 in cancer: Regulatory and therapeutic implications, Front. Oncol., 12, https://doi.org/10.3389/fonc.2022.1039366.
- Chureau, C., Prissette, M., Bourdet, A., Barbe, V., Cattolico, L., Jones, L., Eggen, A., Avner, P., and Duret, L. (2002) Comparative sequence analysis of the X-inactivation center region in mouse, human, and bovine, Genome Res., 12, 894-908, https://doi.org/10.1101/gr.152902.
- Johnston, C. M., Newall, A. E. T., Brockdorff, N., and Nesterova, T. B. (2002) Enox, a novel gene that maps 10 kb upstream of Xist and partially escapes X inactivation, Genomics, 80, 236-244, https://doi.org/10.1006/geno.2002.6819.
- Chow, J. C., Hall, L. L., Clemson, C. M., Lawrence, J. B., and Brown, C. J. (2003) Characterization of expression at the human XIST locus in somatic, embryonal carcinoma, and transgenic cell lines, Genomics, 82, 309-322, https://doi.org/10.1016/S0888-7543(03)00170-8.
- Romito, A., and Rougeulle, C. (2011) Origin and evolution of the long non-coding genes in the X-inactivation center, Biochimie, 93, 1935-1942, https://doi.org/10.1016/j.biochi.2011.07.009.
- Elisaphenko, E. A., Kolesnikov, N. N., Shevchenko, A. I., Rogozin, I. B., Nesterova, T. B., Brockdorff, N., and Zakian, S. M. (2008) A dual origin of the Xist gene from a protein-coding gene and a set of transposable elements, PLoS One, 3, e2521, https://doi.org/10.1371/journal.pone.0002521.
- Oh, H. J., Aguilar, R., Kesner, B., Lee, H.-G., Kriz, A. J., Chu, H.-P., and Lee, J. T. (2021) RNA regulates CTCF anchor site selection and formation of chromosome loops, Cell, 184, 6157-6173.e24, https://doi.org/10.1016/j.cell.2021.11.012.
- Oo, J. A., Warwick, T., Pálfi, K., Lam, F., McNicoll, F., Prieto-Garcia, C., Günther, S., Cao, C., Zhou, Y., Gavrilov, A. A., Razin, S. V., Cabrera-Orefice, A., Wittig, I., Pullamsetti, S. S., Kurian, L., Gilsbach, R., Schulz, M. H., Dikic, I., Müller-McNicoll, M., Brandes, R. P., and Leisegang, M. S. (2025) Long non-coding RNAs direct the SWI/SNF complex to cell type-specific enhancers, Nat. Commun., 16, 131, https://doi.org/10.1038/s41467-024-55539-6.
- Xiong, H., Zhang, W., Xie, M., Chen, R., Chen, H., and Lin, Q. (2024) Long non-coding RNA JPX promotes endometrial carcinoma progression via janus kinase 2/signal transducer and activator of transcription 3, Front. Oncol., 14, https://doi.org/10.3389/fonc.2024.1340050.
- Duret, L., Chureau, C., Samain, S., Weissenbach, J., and Avner, P. (2006) The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene, Science, 312, 1653-1655, https://doi.org/10.1126/science.1126316.
- Hezroni, H., Ben-Tov Perry, R., Meir, Z., Housman, G., Lubelsky, Y., and Ulitsky, I. (2017) A subset of conserved mammalian long non-coding RNAs are fossils of ancestral protein-coding genes, Genome Biol., 18, 162, https://doi.org/10.1186/s13059-017-1293-0.
- Kolesnikov, N. N., and Elisaphenko, E. A. (2010) Comparative organization and the origin of noncoding regulatory RNA genes from X-chromosome inactivation center of human and mouse, Russ. J. Genet., 46, 1223-1228, https://doi.org/10.1134/S1022795410100200.
- Karner, H., Webb, C.-H., Carmona, S., Liu, Y., Lin, B., Erhard, M., Chan, D., Baldi, P., Spitale, R. C., and Sun, S. (2020) Functional conservation of LncRNA JPX despite sequence and structural divergence, J. Mol. Biol., 432, 283-300, https://doi.org/10.1016/j.jmb.2019.09.002.
- Rosspopoff, O., Cazottes, E., Huret, C., Loda, A., Collier, A. J., Casanova, M., Rugg-Gunn, P. J., Heard, E., Ouimette, J.-F., and Rougeulle, C. (2023) Species-specific regulation of XIST by the JPX/FTX orthologs, Nucleic Acids Res., 51, 2177-2194, https://doi.org/10.1093/nar/gkad029.
- Cazottes, E., Alfeghaly, C., Rognard, C., Loda, A., Castel, G., Villacorta, L., Dong, M., Heard, E., Aksoy, I., Savatier, P., Morey, C., and Rougeulle, C. (2023) Extensive remodelling of XIST regulatory networks during primate evolution, bioRxiv, https://doi.org/10.1101/2023.12.04.569904.
- Shevchenko, A. I., Malakhova, A. A., Elisaphenko, E. A., Mazurok, N. A., Nesterova, T. B., Brockdorff, N., and Zakian, S. M. (2011) Variability of sequence surrounding the Xist gene in rodents suggests taxon-specific regulation of X chromosome inactivation, PLoS One, 6, e22771, https://doi.org/10.1371/journal.pone.0022771.
- Елисафенко Е.А., Шевченко А.И., Закиян С.М. (2016) Профили экспрессии нетранслируемых РНК в центре инактивации у мышевидных грызунов, Гены Клетки, 11, 82-86.
- Tian, D., Sun, S., and Lee, J. T. (2010) The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation, Cell, 143, 390-403, https://doi.org/10.1016/j.cell.2010.09.049.
- Sun, S., Del Rosario, B. C., Szanto, A., Ogawa, Y., Jeon, Y., and Lee, J. T. (2013) Jpx RNA activates Xist by evicting CTCF, Cell, 153, 1537-1551, https://doi.org/10.1016/j.cell.2013.05.028.
- Carmona, S., Lin, B., Chou, T., Arroyo, K., and Sun, S. (2018) LncRNA Jpx induces Xist expression in mice using both trans and cis mechanisms, PLoS Genet., 14, e1007378, https://doi.org/10.1371/journal.pgen.1007378.
- Heger, P., Marin, B., Bartkuhn, M., Schierenberg, E., and Wiehe, T. (2012) The chromatin insulator CTCF and the emergence of metazoan diversity, Proc. Natl. Acad. Sci. USA, 109, 17507-17512, https://doi.org/10.1073/pnas.1111941109.
- Schwalie, P. C., Ward, M. C., Cain, C. E., Faure, A. J., Gilad, Y., Odom, D. T., and Flicek, P. (2013) Co-binding by YY1 identifies the transcriptionally active, highly conserved set of CTCF-bound regions in primate genomes, Genome Biol., 14, R148, https://doi.org/10.1186/gb-2013-14-12-r148.
- Liu, F., Wu, D., and Wang, X. (2019) Roles of CTCF in conformation and functions of chromosome, Semin. Cell Dev. Biol., 90, 168-173, https://doi.org/10.1016/j.semcdb.2018.07.021.
- Moore, J. M., Rabaia, N. A., Smith, L. E., Fagerlie, S., Gurley, K., Loukinov, D., Disteche, C. M., Collins, S. J., Kemp, C. J., Lobanenkov, V. V., and Filippova, G. N. (2012) Loss of maternal CTCF is associated with peri-implantation lethality of Ctcf null embryos, PloS One, 7, e34915, https://doi.org/10.1371/journal.pone.0034915.
- Heath, H., Ribeiro de Almeida, C., Sleutels, F., Dingjan, G., van de Nobelen, S., Jonkers, I., Ling, K.-W., Gribnau, J., Renkawitz, R., Grosveld, F., Hendriks, R. W., and Galjart, N. (2008) CTCF regulates cell cycle progression of αβ T cells in the thymus, EMBO J., 27, 2839-2850, https://doi.org/10.1038/emboj.2008.214.
- Gomez-Velazquez, M., Badia-Careaga, C., Lechuga-Vieco, A. V., Nieto-Arellano, R., Tena, J. J., Rollan, I., Alvarez, A., Torroja, C., Caceres, E. F., Roy, A. R., Galjart, N., Delgado-Olguin, P., Sanchez-Cabo, F., Enriquez, J. A., Gomez-Skarmeta, J. L., and Manzanares, M. (2017) CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart, PLoS Genet., 13, e1006985, https://doi.org/10.1371/journal.pgen.1006985.
- Oudelaar, A. M., and Higgs, D. R. (2021) The relationship between genome structure and function, Nat. Rev. Genet., 22, 154-168, https://doi.org/10.1038/s41576-020-00303-x.
- Merkenschlager, M., and Nora, E. P. (2016) CTCF and cohesin in genome folding and transcriptional gene regulation, Annu. Rev. Genomics Hum. Genet., 17, 17-43, https://doi.org/10.1146/annurev-genom-083115-022339.
- Saldaña-Meyer, R., Rodriguez-Hernaez, J., Escobar, T., Nishana, M., Jácome-López, K., Nora, E. P., Bruneau, B. G., Tsirigos, A., Furlan-Magaril, M., Skok, J., and Reinberg, D. (2019) RNA interactions are essential for CTCFmediated genome organization, Mol. Cell, 76, 412-422.e5, https://doi.org/10.1016/j.molcel.2019.08.015.
- Hansen, A. S., Hsieh, T.-H. S., Cattoglio, C., Pustova, I., Saldaña-Meyer, R., Reinberg, D., Darzacq, X., and Tjian, R. (2019) Distinct classes of chromatin loops revealed by deletion of an RNA-binding region in CTCF, Mol. Cell, 76, 395-411.e13, https://doi.org/10.1016/j.molcel.2019.07.039.
- Sen, D., Maniyadath, B., Chowdhury, S., Kaur, A., Khatri, S., Chakraborty, A., Mehendale, N., Nadagouda, S., Sandra, U. S., Kamat, S. S., and Kolthur-Seetharam, U. (2023) Metabolic regulation of CTCF expression and chromatin association dictates starvation response in mice and flies, iScience, 26, 107128, https://doi.org/10.1016/j.isci.2023.107128.
- Ma, X., Yuan, T., Yang, C., Wang, Z., Zang, Y., Wu, L., and Zhuang, L. (2017) X-inactive-specific transcript of peripheral blood cells is regulated by exosomal Jpx and acts as a biomarker for female patients with hepatocellular carcinoma, Ther. Adv. Med. Oncol., 9, 665-677, https://doi.org/10.1177/1758834017731052.
- Gu, J., Chen, J., Yin, Q., Dong, M., Zhang, Y., Chen, M., Chen, X., Min, J., He, X., Tan, Y., Zheng, L., Jiang, H., Wang, B., Li, X., and Chen, H. (2024) lncRNA JPX-enriched chromatin microenvironment mediates vascular smooth muscle cell senescence and promotes atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 44, 156-176, https://doi.org/10.1161/ATVBAHA.122.319250.
- Alver, B. H., Kim, K. H., Lu, P., Wang, X., Manchester, H. E., Wang, W., Haswell, J. R., Park, P. J., and Roberts, C. W. M. (2017) The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers, Nat. Commun., 8, 14648, https://doi.org/10.1038/ncomms14648.
- Wolf, B. K., Zhao, Y., McCray, A., Hawk, W. H., Deary, L. T., Sugiarto, N. W., LaCroix, I. S., Gerber, S. A., Cheng, C., and Wang, X. (2023) Cooperation of chromatin remodeling SWI/SNF complex and pioneer factor AP-1 shapes 3D enhancer landscapes, Nat. Struct. Mol. Biol., 30, 10-21, https://doi.org/10.1038/s41594-022-00880-x.
- Bao, J., Zhang, C., Chen, J., Xuan, H., Wang, C., Wang, S., Yin, J., Liu, Y., Li, D., and Xu, T. (2023) LncRNA JPX targets SERCA2a to mitigate myocardial ischemia/reperfusion injury by binding to EZH2, Exp. Cell Res., 427, 113572, https://doi.org/10.1016/j.yexcr.2023.113572.
- Luo, D., Tang, H., Tan, L., Zhang, L., Wang, L., Cheng, Q., Lei, X., and Wu, J. (2024) lncRNA JPX promotes tumor progression by interacting with and destabilizing YTHDF2 in cutaneous melanoma, Mol. Cancer Res., 22, 524-537, https://doi.org/10.1158/1541-7786.MCR-23-0701.
- Li, X. D., Wang, M. J., Zheng, J. L., Wu, Y. H., Wang, X., and Jiang, X. B. (2021) Long noncoding RNA just proximal to X-inactive specific transcript facilitates aerobic glycolysis and temozolomide chemoresistance by promoting stability of PDK1 mRNA in an m6A-dependent manner in glioblastoma multiforme cells, Cancer Sci., 112, 4543-4552, https://doi.org/10.1111/cas.15072.
- Shang, R., Lee, S., Senavirathne, G., and Lai, E. C. (2023) microRNAs in action: biogenesis, function and regulation, Nat. Rev. Genet., 24, 816-833, https://doi.org/10.1038/s41576-023-00611-y.
- O’Brien, J., Hayder, H., Zayed, Y., and Peng, C. (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation, Front. Endocrinol., 9, 402, https://doi.org/10.3389/fendo.2018.00402.
- Agrawal, A., and Vindal, V. (2024) Competing endogenous RNAs in head and neck squamous cell carcinoma: a review, Brief. Funct. Genomics, 23, 335-348, https://doi.org/10.1093/bfgp/elad049.
- Asadi, M. R., Abed, S., Kouchakali, G., Fattahi, F., Sabaie, H., Moslehian, M. S., Sharifi-Bonab, M., Hussen, B. M., Taheri, M., Ghafouri-Fard, S., and Rezazadeh, M. (2023) Competing endogenous RNA (ceRNA) networks in Parkinson’s disease: a systematic review, Front. Cell. Neurosci., 17, 1044634, https://doi.org/10.3389/fncel.2023.1044634.
- Xu, J., Xu, J., Liu, X., and Jiang, J. (2022) The role of lncRNA-mediated ceRNA regulatory networks in pancreatic cancer, Cell Death Discov., 8, 287, https://doi.org/10.1038/s41420-022-01061-x.
- Pan, J., Fang, S., Tian, H., Zhou, C., Zhao, X., Tian, H., He, J., Shen, W., Meng, X., Jin, X., and Gong, Z. (2020) lncRNA JPX/miR-33a-5p/Twist1 axis regulates tumorigenesis and metastasis of lung cancer by activating Wnt/β-catenin signaling, Mol. Cancer, 19, 9, https://doi.org/10.1186/s12943-020-1133-9.
- Sun, M., Zhan, N., Yang, Z., Zhang, X., Zhang, J., Peng, L., Luo, Y., Lin, L., Lou, Y., You, D., Qiu, T., Liu, Z., Wang, Q., Liu, Y., Sun, P., Yu, M., and Wang, H. (2024) Cuproptosis-related lncRNA JPX regulates malignant cell behavior and epithelial-immune interaction in head and neck squamous cell carcinoma via miR-193b-3p/PLAU axis, Int. J. Oral Sci., 16, 63, https://doi.org/10.1038/s41368-024-00314-y.
- Han, X., and Liu, Z. (2021) Long non-coding RNA JPX promotes gastric cancer progression by regulating CXCR6 and autophagy via inhibiting miR-197, Mol. Med. Rep., 23, 60, https://doi.org/10.3892/mmr.2020.11698.
- Jin, M., Ren, J., Luo, M., You, Z., Fang, Y., Han, Y., Li, G., and Liu, H. (2020) Long non-coding RNA JPX correlates with poor prognosis and tumor progression in non-small-cell lung cancer by interacting with miR-145-5p and CCND2, Carcinogenesis, 41, 634-645, https://doi.org/10.1093/carcin/bgz125.
- Chen, X., Yang, J., and Wang, Y. (2020) LncRNA JPX promotes cervical cancer progression by modulating miR-25-3p/SOX4 axis, Cancer Cell Int., 20, 441, https://doi.org/10.1186/s12935-020-01486-3.
- He, Y., Hua, R., Yang, Y., Li, B., Guo, X., and Li, Z. (2022) LncRNA JPX promotes esophageal squamous cell carcinoma progression by targeting miR-516b-5p/VEGFA axis, Cancers, 14, 2713, https://doi.org/10.3390/cancers14112713.
- Yao, Y., Chen, S., Lu, N., Yin, Y., and Liu, Z. (2021) LncRNA JPX overexpressed in oral squamous cell carcinoma drives malignancy via miR-944/CDH2 axis, Oral Dis., 27, 924-933, https://doi.org/10.1111/odi.13626.
- Kuang, Y., Shen, W., Zhu, H., Huang, H., Zhou, Q., Yin, W., Zhou, Y., Cao, Y., Wang, L., Li, X., Ren, C., and Jiang, X. (2022) The role of lncRNA just proximal to XIST (JPX) in human disease phenotypes and RNA methylation: the novel biomarker and therapeutic target potential, Biomed. Pharmacother., 155, 113753, https://doi.org/10.1016/j.biopha.2022.113753.
- Wang, Y., Bai, H., Jiang, M., Zhou, C., and Gong, Z. (2023) Emerging role of long non-coding RNA JPX in malignant processes and potential applications in cancers, Chin. Med. J. (Engl.), 136, 757-766, https://doi.org/10.1097/CM9.0000000000002392.
- Mosca, N., Pezzullo, M., De Leo, I., Truda, A., Marchese, G., Russo, A., and Potenza, N. (2024) A novel ceRNET relying on the lncRNA JPX, miR-378a-3p, and its mRNA targets in lung cancer, Cancers, 16, 1526, https://doi.org/10.3390/cancers16081526.
- Xiong, W., Liu, D., Chen, X., Liu, L., and Xiao, W. (2022) lncRNA JPX modulates malignant progress of osteosarcoma through targeting miR-33a-5p and PNMA1 regulatory loop, Transl. Oncol., 25, 101504, https://doi.org/10.1016/j.tranon.2022.101504.
- Yang, H., Wang, G., Liu, J., Lin, M., Chen, J., Fang, Y., Li, Y., Cai, W., and Zhan, D. (2021) LncRNA JPX regulates proliferation and apoptosis of nucleus pulposus cells by targeting the miR-18a-5p/HIF-1α/Hippo-YAP pathway, Biochem. Biophys. Res. Commun., 566, 16-23, https://doi.org/10.1016/j.bbrc.2021.05.075.
- Xu, T., Zhang, Y., Liao, G., Xuan, H., Yin, J., Bao, J., Liu, Y., and Li, D. (2023) Luteolin pretreatment ameliorates myocardial ischemia/reperfusion injury by lncRNA-JPX/miR-146b axis, Anal. Cell. Pathol. Amst., 2023, 4500810,https://doi.org/10.1155/2023/4500810.
- Ren, Z., Tang, L., Ding, Z., Song, J., Zheng, H., and Li, D. (2022) Knockdown of lncRNA JPX suppresses IL-1β-stimulated injury in chondrocytes through modulating an miR-25-3p/PPID axis, Oncol. Lett., 24, 1-9, https://doi.org/10.3892/ol.2022.13508.
- Chen, Z., Ke, X., Wang, X., Kang, H., and Hong, S. (2022) LncRNA JPX contributes to Treg/Th17 imbalance in allergic rhinitis via targeting the miR-378g/CCL5 axis, Immunopharmacol. Immunotoxicol., 44, 519-524, https://doi.org/10.1080/08923973.2022.2055566.
- Xing, Y., Wen, X., Ding, X., Fan, J., Chai, P., Jia, R., Ge, S., Qian, G., Zhang, H., and Fan, X. (2017) CANT1 lncRNA triggers efficient therapeutic efficacy by correcting aberrant lncing cascade in malignant uveal melanoma, Mol. Ther., 25, 1209-1221, https://doi.org/10.1016/j.ymthe.2017.02.016.
- Dahariya, S., Raghuwanshi, S., Sangeeth, A., Malleswarapu, M., Kandi, R., and Gutti, R. K. (2021) Megakaryoblastic leukemia: a study on novel role of clinically significant long non-coding RNA signatures in megakaryocyte development during treatment with phorbol ester, Cancer Immunol. Immunother., 70, 3477-3488, https://doi.org/10.1007/s00262-021-02937-0.
- Ma, W., Wang, H., Jing, W., Zhou, F., Chang, L., Hong, Z., Liu, H., Liu, Z., and Yuan, Y. (2017) Downregulation of long non-coding RNAs JPX and XIST is associated with the prognosis of hepatocellular carcinoma, Clin. Res. Hepatol. Gastroenterol., 41, 163-170, https://doi.org/10.1016/j.clinre.2016.09.002.
- Lin, X., Huang, Z., Chen, X., Wu, F., and Wu, W. (2018) XIST induced by JPX suppresses hepatocellular carcinoma by sponging miR-155-5p, Yonsei Med. J., 59, 816-826, https://doi.org/10.3349/ymj.2018.59.7.816.
- Sajjadi, R. S., Modarressi, M. H., and Tabatabaiefar, M. A. (2021) JPX and LINC00641 ncRNAs expression in prostate tissue: a case-control study, Res. Pharm. Sci., 16, 493-504, https://doi.org/10.4103/1735-5362.323916.
- Huang, Y.-S., Chang, C.-C., Lee, S.-S., Jou, Y.-S., and Shih, H.-M. (2016) Xist reduction in breast cancer upregulates AKT phosphorylation via HDAC3-mediated repression of PHLPP1 expression, Oncotarget, 7, 43256-43266, https://doi.org/10.18632/oncotarget.9673.
- Li, J., Feng, L., Tian, C., Tang, Y.-L., Tang, Y., and Hu, F.-Q. (2018) Long noncoding RNA-JPX predicts the poor prognosis of ovarian cancer patients and promotes tumor cell proliferation, invasion and migration by the PI3K/Akt/mTOR signaling pathway, Eur. Rev. Med. Pharmacol. Sci., 22, 8135-8144, https://doi.org/10.26355/eurrev_201812_16505.
- Gál, Z., Gézsi, A., Semsei, Á. F., Nagy, A., Sultész, M., Csoma, Z., Tamási, L., Gálffy, G., and Szalai, C. (2020) Investigation of circulating lncRNAs as potential biomarkers in chronic respiratory diseases, J. Transl. Med., 18, 422, https://doi.org/10.1186/s12967-020-02581-9.
Supplementary files


