Concept of human aging biomarkers
- 作者: Kobelyatskaya A.A.1, Moskalev A.A.1
-
隶属关系:
- Institute of Longevity with Rehabilitation and Preventive Medicine Clinic of the Russian National Research Center of Surgery named after Academician B. V. Petrovsky
- 期: 卷 90, 编号 8 (2025)
- 页面: 1113-1123
- 栏目: Articles
- URL: https://bakhtiniada.ru/0320-9725/article/view/356268
- DOI: https://doi.org/10.31857/S0320972525080035
- EDN: https://elibrary.ru/VBMYUM
- ID: 356268
如何引用文章
详细
Aging biomarkers enable the assessment of aging rate, prediction of age-associated diseases, and monitoring of preventive intervention efficacy, such as diet, physical activity, and geroprotectors. This article examines key criteria for aging biomarkers, including their association with age, prognostic value regarding mortality, ability to identify early stages of age-related pathologies, and minimal invasiveness. A comprehensive classification of markers (clinical, functional, molecular, omics, digital) and the evolution of aging clocks - from epigenetic models to causal systems based on Mendelian randomization - is presented. Special emphasis is placed on explainable artificial intelligence (XAI) technologies that allow algorithm interpretation, as well as practical application of biomarkers in clinical research. The prospects for developing comprehensive biomarker panels and personalized approaches to aging assessment are discussed.
作者简介
A. Kobelyatskaya
Institute of Longevity with Rehabilitation and Preventive Medicine Clinic of the Russian National Research Center of Surgery named after Academician B. V. Petrovsky
编辑信件的主要联系方式.
Email: amoskalev@med.ru
Moscow
A. Moskalev
Institute of Longevity with Rehabilitation and Preventive Medicine Clinic of the Russian National Research Center of Surgery named after Academician B. V. Petrovsky
Email: amoskalev@med.ru
Moscow
参考
- Butler, R. N., Sprott, R., Warner, H., Bland, J., Feuers, R., Forster, M., Fillit, H., Harman, S. M., Hewitt, M., Hyman, M., Johnson, K., Kligman, E., McClearn, G., Nelson, J., Richardson, A., Sonntag, W., Weindruch, R., and Wolf, N. (2004) Biomarkers of aging: from primitive organisms to humans, J. Gerontol. A Biol. Sci. Med. Sci., 59, B560-B567, https://doi.org/10.1093/gerona/59.6.b560.
- Moqri, M., Herzog, C., Poganik, J. R., Biomarkers of Aging Consortium, Justice, J., Belsky, D. W., Higgins-Chen, A., Moskalev, A., Fuellen, G., Cohen, A. A., Bautmans, I., Widschwendter, M., Ding, J., Fleming, A., Mannick, J., Han, J. J., Zhavoronkov, A., Barzilai, N., Kaeberlein, M., Cummings, S., Kennedy, B. K., Ferrucci, L., Horvath, S., Verdin, E., Maier, A. B., Snyder, M. P., Sebastiano, V., and Gladyshev, V. N. (2023) Biomarkers of aging for the identification and evaluation of longevity interventions, Cell, 186, 3758-3775, https://doi.org/10.1016/j.cell.2023.08.003.
- Moskalev, A. (2020) The challenges of estimating biological age, Elife, 9, e54969, https://doi.org/10.7554/eLife.54969.
- Galkin, F., Mamoshina, P., Aliper, A., de Magalhães, J. P., Gladyshev, V. N., and Zhavoronkov, A. (2020) Biohorology and biomarkers of aging: current state-of-the-art, challenges and opportunities, Ageing Res. Rev., 60, 101050, https://doi.org/10.1016/j.arr.2020.101050.
- Putin, E., Mamoshina, P., Aliper, A., Korzinkin, M., Moskalev, A., Kolosov, A., Ostrovskiy, A., Cantor, C., Vijg, J., and Zhavoronkov, A. (2016) Deep biomarkers of human aging: Application of deep neural networks to biomarker development, Aging (Albany NY), 8, 1021-1033, https://doi.org/10.18632/aging.100968.
- Zhavoronkov, A., Li, R., Ma, C., and Mamoshina, P. (2019) Deep biomarkers of aging and longevity: from research to applications, Aging (Albany NY), 11, 10771-10780, https://doi.org/10.18632/aging.102475.
- Shen, X., Wang, C., Zhou, X., Zhou, W., Hornburg, D., Wu, S., and Snyder, M. P. (2024) Nonlinear dynamics of multi-omics profiles during human aging, Nat. Aging, 4, 1619-1634, https://doi.org/10.1038/s43587-024-00692-2.
- Kliuchnikova, A. A., Ilgisonis, E. V., Archakov, A. I., Ponomarenko, E. A., and Moskalev, A. A. (2024) Proteomic markers of aging and longevity: a systematic review, Int. J. Mol. Sci., 25, 12634, https://doi.org/10.3390/ijms252312634.
- Pyrkov, T. V., Getmantsev, E., Zhurov, B., Avchaciov, K., Pyatnitskiy, M., Menshikov, L., Khodova, K., Gudkov, A. V., and Fedichev, P. O. (2018) Quantitative characterization of biological age and frailty based on locomotor activity records, Aging (Albany NY), 10, 2973-2990, https://doi.org/10.18632/aging.101603.
- Solovev, I. A., Shaposhnikov, M. V., and Moskalev, A. (2019) An Overview of the Molecular and Cellular Biomarkers of Aging, in Biomarkers of Human Aging (Moskalev, A. ed), Springer International Publishing, Cham, pp. 67-78, https://doi.org/10.1007/978-3-030-24970-0_6.
- Fedintsev, A., Karnaushkina, M., Stambler, I., Mitnitski, A., Melerzanov, A., Litvinova, M., Balbek, K., and Moskalev, A. (2023) New frailty index approach predicts COVID-19 mortality risk, Adv. Gerontol., 13, 26-35, https://doi.org/10.1134/S2079057024600046.
- Prattichizzo, F., Frigé, C., Pellegrini, V., Scisciola, L., Santoro, A., Monti, D., Rippo, M. R., Ivanchenko, M., Olivieri, F., and Franceschi, C. (2024) Organ-specific biological clocks: Ageotyping for personalized anti-aging medicine, Ageing Res. Rev., 96, 102253, https://doi.org/10.1016/j.arr.2024.102253.
- Oh, H. S. H., Rutledge, J., Nachun, D., Pálovics, R., Abiose, O., Moran-Losada, P., Channappa, D., Urey, D. Y., Kim, K., Sung, Y. J., Wang, L., Timsina, J., Western, D., Liu, M., Kohlfeld, P., Budde, J., Wilson, E. N., Guen, Y., Maurer, T. M., Haney, M., Yang, A. C., He, Z., Greicius, M. D., Andreasson, K. I., Sathyan, S., Weiss, E. F., Milman, S., Barzilai, N., Cruchaga, C., Wagner, A. D., Mormino, E., Lehallier, B., Henderson, V. W., Longo, F. M., Montgomery, S. B., and Wyss-Coray, T. (2023) Organ aging signatures in the plasma proteome track health and disease, Nature, 624, 164-172, https://doi.org/10.1038/s41586-023-06802-1.
- Belsky, D. W., Caspi, A., Houts, R., Cohen, H. J., Corcoran, D. L., Danese, A., Harrington, H., Israel, S., Levine, M. E., Schaefer, J. D., Sugden, K., Williams, B., Yashin, A. I., Poulton, R., and Moffitt, T. E. (2015) Quantification of biological aging in young adults, Proc. Natl. Acad. Sci. USA, 112, E4104-E4110, https://doi.org/10.1073/pnas.1506264112.
- Aging Biomarker Consortium, Bao, H., Cao, J., Chen, M., Chen, M., Chen, W., Chen, X., Chen, Y., Chen, Y., Chen, Y., Chen, Z., Chhetri, J. K., Ding, Y., Feng, J., Guo, J., Guo, M., He, C., Jia, Y., Jiang, H., Jing, Y., Li, D., Li, J., Li, J., Liang, Q., Liang, R., Liu, F., Liu, X., Liu, Z., Luo, O. J., Lv, J., Ma, J., Mao, K., Nie, J., Qiao, X., Sun, X., Tang, X., Wang, J., Wang, Q., Wang, S., Wang, X., Wang, Y., Wang, Y., Wu, R., Xia, K., Xiao, F.-H., Xu, L., Xu, Y., Yan, H., Yang, L., Yang, R., Yang, Y., Ying, Y., Zhang, L., Zhang, W., Zhang, W., Zhang, X., Zhang, Z., Zhou, M., Zhou, R., Zhu, Q., Zhu, Z., Cao, F., Cao, Z., Chan, P., Chen, C., Chen, G., Chen, H.-Z., Chen, J., Ci, W., Ding, B.-S., Ding, Q., Gao, F., Han, J.-D. J., Huang, K., Ju, Z., Kong, Q.-P., Li, J., Li, J., Li, X., Liu, B., Liu, F., Liu, L., Liu, Q., Liu, Q., Liu, X., Liu, Y., Luo, X., Ma, S., Ma, X., Mao, Z., Nie, J., Peng, Y., Qu, J., Ren, J., Ren, R., Song, M., Songyang, Z., Sun, Y. E., Sun, Y., Tian, M., Wang, S., Wang, S., Wang, X., Wang, X., Wang, Y.-J., Wang, Y., Wong, C. C. L., Xiang, A. P., Xiao, Y., Xie, Z., Xu, D., Ye, J., Yue, R., Zhang, C., Zhang, H., Zhang, L., Zhang, W., Zhang, Y., Zhang, Y.-W., Zhang, Z., Zhao, T., Zhao, Y., Zhu, D., Zou, W., Pei, G., and Liu, G.-H. (2023) Biomarkers of aging, Sci. China Life Sci., 66, 893-1066, https://doi.org/10.1007/s11427-023-2305-0.
- Margiotti, K., Monaco, F., Fabiani, M., Mesoraca, A., and Giorlandino, C. (2023) Epigenetic clocks: in aging-related and complex diseases, Cytogenet. Genome Res., 163, 247-256, https://doi.org/10.1159/000534561.
- Warner, B., Ratner, E., Datta, A., and Lendasse, A. (2024) A systematic review of phenotypic and epigenetic clocks used for aging and mortality quantification in humans, Aging (Albany NY), 16, 12414-12427, https://doi.org/10.18632/aging.206098.
- Crimmins, E. M., Klopack, E. T., and Kim, J. K. (2024) Generations of epigenetic clocks and their links to socioeconomic status in the health and retirement study, Epigenomics, 16, 1031-1042, https://doi.org/10.1080/17501911.2024.2373682.
- Horvath, S. (2013) DNA methylation age of human tissues and cell types, Genome Biol., 14, R115, https://doi.org/10.1186/gb-2013-14-10-r115.
- Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., Bibikova, M., Fan, J.-B., Gao, Y., Deconde, R., Chen, M., Rajapakse, I., Friend, S., Ideker, T., and Zhang, K. (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates, Mol. Cell, 49, 359-367, https://doi.org/10.1016/j.molcel.2012.10.016.
- Raj, K. (2018) Chapter 4 - The Epigenetic Clock and Aging. in Epigenetics of Aging and Longevity (Moskalev, A., and Vaiserman, A. M., eds), Academic Press, Boston, pp. 95-118, https://doi.org/10.1016/B978-0-12-811060-7.00004-8.
- Bekaert, B., Kamalandua, A., Zapico, S. C., Van de Voorde, W., and Decorte, R. (2015) Improved age determination of blood and teeth samples using a selected set of DNA methylation markers, Epigenetics, 10, 922-930, https://doi.org/10.1080/15592294.2015.1080413.
- Guvatova, Z. G., Kobelyatskaya, A. A., Pudova, E. A., Tarasova, I. V., Kudryavtseva, A. V., Tkacheva, O. N., Strazhesko, I. D., and Moskalev, A. A. (2023) Decelerated epigenetic aging in long livers, Int. J. Mol. Sci., 24, 16867, https://doi.org/10.3390/ijms242316867.
- Fedintsev, A., Kashtanova, D., Tkacheva, O., Strazhesko, I., Kudryavtseva, A., Baranova, A., and Moskalev, A. (2017) Markers of arterial health could serve as accurate non-invasive predictors of human biological and chronological age, Aging (Albany NY), 9, 1280-1292, https://doi.org/10.18632/aging.101227.
- Kobelyatskaya, A. A., Guvatova, Z. G., Tkacheva, O. N., Isaev, F. I., Kungurtseva, A. L., Vitebskaya, A. V., Kudryavtseva, A. V., Plokhova, E. V., Machekhina, L. V., Strazhesko, I. D., and Moskalev, A. A. (2024) EchoAGE: echocardiography-based neural network model forecasting heart biological age, Aging Dis., 16, 2383-2397, https://doi.org/10.14336/AD.2024.0615.
- Kobelyatskaya, A. A., Isaev, F. I., Kudryavtseva, A. V., Guvatova, Z. G., and Moskalev, A. A. (2024) AcidAGE: a biological age determination neural network based on urine organic acids, Biogerontology, 26, 20, https://doi.org/10.1007/s10522-024-10161-3.
- Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., Hou, L., Baccarelli, A. A., Stewart, J. D., Li, Y., Whitsel, E. A., Wilson, J. G., Reiner, A. P., Aviv, A., Lohman, K., Liu, Y., Ferrucci, L., and Horvath, S. (2018) An epigenetic biomarker of aging for lifespan and healthspan, Aging (Albany NY), 10, 573-591, https://doi.org/10.18632/aging.101414.
- Lu, A. T., Quach, A., Wilson, J. G., Reiner, A. P., Aviv, A., Raj, K., Hou, L., Baccarelli, A. A., Li, Y., Stewart, J. D., Whitsel, E. A., Assimes, T. L., Ferrucci, L., and Horvath, S. (2019) DNA methylation GrimAge strongly predicts lifespan and healthspan, Aging (Albany NY), 11, 303-327, https://doi.org/10.18632/aging.101684.
- Belsky, D. W., Caspi, A., Corcoran, D. L., Sugden, K., Poulton, R., Arseneault, L., Baccarelli, A., Chamarti, K., Gao, X., Hannon, E., Harrington, H. L., Houts, R., Kothari, M., Kwon, D., Mill, J., Schwartz, J., Vokonas, P., Wang, C., Williams, B. S., and Moffitt, T. E. (2022) DunedinPACE, a DNA methylation biomarker of the pace of aging, Elife, 11, e73420, https://doi.org/10.7554/eLife.73420.
- Harvanek, Z. M., Sehgal, R., Borrus, D., Kasamoto, J., Priyanka, A., Corley, M. J., Vinkers, C. H., Boks, M. P., Smith, R., Dwaraka, V. B., Lasky-Su, J., and Higgins-Chen, A. T. (2024) Multidimensional epigenetic clocks demonstrate accelerated aging across physiological systems in schizophrenia: a meta-analysis, medRxiv, https://doi.org/10.1101/2024.10.28.24316295.
- Pan, L.-Y., and Jin, L. (2025) Association between triglyceride glucose index and biological aging in U.S. adults: National Health and Nutrition Examination Survey, Cardiovasc. Diabetol., 24, 100, https://doi.org/10.1186/s12933-025-02631-w.
- Biomarkers of Aging Consortium, Herzog, C. M. S., Goeminne, L. J. E., Poganik, J. R., Barzilai, N., Belsky, D. W., Betts-LaCroix, J., Chen, B. H., Chen, M., Cohen, A. A., Cummings, S. R., Fedichev, P. O., Ferrucci, L., Fleming, A., Fortney, K., Furman, D., Gorbunova, V., Higgins-Chen, A., Hood, L., Horvath, S., Justice, J. N., Kiel, D. P., Kuchel, G. A., Lasky-Su, J., LeBrasseur, N. K., Maier, A. B., Schilling, B., Sebastiano, V., Slagboom, P. E., Snyder, M. P., Verdin, E., Widschwendter, M., Zhavoronkov, A., Moqri, M., and Gladyshev, V. N. (2024) Challenges and recommendations for the translation of biomarkers of aging, Nat. Aging, 4, 1372-1383, https://doi.org/10.1038/s43587-024-00683-3.
- Hu, I. (2025) House of clocks: on the misuse of ageing composite measures, bioRxiv, https://doi.org/10.1101/2025.05.24.655934.
- Libert, S., Chekholko, A., and Kenyon, C. (2025) A mathematical model that predicts human biological age from physiological traits identifies environmental and genetic factors that influence aging, Elife, 13, RP92092, https://doi.org/10.7554/eLife.92092.
- Pisarek, A., Pośpiech, E., Heidegger, A., Xavier, C., Papież, A., Piniewska-Róg, D., Kalamara, V., Potabattula, R., Bochenek, M., Sikora-Polaczek, M., Macur, A., Woźniak, A., Janeczko, J., Phillips, C., Haaf, T., Polańska, J., Parson, W., Kayser, M., and Branicki, W. (2021) Epigenetic age prediction in semen - marker selection and model development, Aging (Albany NY), 13, 19145-19164, https://doi.org/10.18632/aging.203399.
- Yoo, J., Hur, J., Yoo, J., Jurivich, D., and Lee, K. J. (2024) A novel approach to quantifying individual's biological aging using Korea's national health screening program toward precision public health, Geroscience, 46, 3387-3403, https://doi.org/10.1007/s11357-024-01079-2.
- Moskalev, A., Stambler, I., and Zhavoronkov, A. (2023) Artificial Intelligence for Healthy Longevity, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-031-35176-1.
- Kalyakulina, A., Yusipov, I., Moskalev, A., Franceschi, C., and Ivanchenko, M. (2024) eXplainable Artificial Intelligence (XAI) in aging clock models, Ageing Res. Rev., 93, 102144, https://doi.org/10.1016/j.arr.2023.102144.
- Kennedy, B. K., Berger, S. L., Brunet, A., Campisi, J., Cuervo, A. M., Epel, E. S., Franceschi, C., Lithgow, G. J., Morimoto, R. I., Pessin, J. E., Rando, T. A., Richardson, A., Schadt, E. E., Wyss-Coray, T., and Sierra, F. (2014) Geroscience: linking aging to chronic disease, Cell, 159, 709-713, https://doi.org/10.1016/j.cell.2014.10.039.
- Strazhesko, I., Tkacheva, O., Kashtanova, D., Ivanov, M., Kljashtorny, V., Esakova, A., Karnaushkina, M., Guillemette, C., Hewett, A., Legault, V., Maytesian, L., Litvinova, M., Cohen, A., and Moskalev, A. (2022) Physiological health indexes predict deterioration and mortality in patients with COVID-19: a comparative study, Aging (Albany NY), 14, 1611-1626, https://doi.org/10.18632/aging.203915.
- Isaev, F. I., Sadykov, A. R., and Moskalev, A. (2023) Blood markers of biological age evaluates clinic complex medical spa programs, Biomedicines, 11, 625, https://doi.org/10.3390/biomedicines11020625.
- Maganova, F., Voevoda, M., Popov, V., and Moskalev, A. (2023) A prospective randomized comparative placebo-controlled double-blind study in two groups to assess the effect of the use of biologically active additives with Siberian fir terpenes for the biological age of a person, Front. Pharmacol., 14, 1150504, https://doi.org/10.3389/fphar.2023.1150504.
- López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., and Kroemer, G. (2013) The hallmarks of aging, Cell, 153, 1194-1217, https://doi.org/10.1016/j.cell.2013.05.039.
- López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., and Kroemer, G. (2023) Hallmarks of aging: an expanding universe, Cell, 186, 243-278, https://doi.org/10.1016/j.cell.2022.11.001.
补充文件

