In vivo AND in vitro MODELS OF HEPATITIS B VIRUS INFECTION
- Autores: Kolyako Y.V1, Zhitkevich A.S1, Avdoshina D.V1, Tanygina D.Y1, Apolokhov V.D1, Gorodnicheva T.V1,2, Kostyushev D.S3,4,5, Bayurova E.O1, Gordeychuk I.V1,3
-
Afiliações:
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
- Pirogov Russian National Research Medical University
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
- Lomonosov Moscow State University
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
- Edição: Volume 90, Nº 11 (2025)
- Páginas: 1601-1620
- Seção: Articles
- URL: https://bakhtiniada.ru/0320-9725/article/view/362441
- DOI: https://doi.org/10.7868/S3034529425110056
- ID: 362441
Citar
Resumo
Sobre autores
Y. Kolyako
Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
Email: kolyako_jv@chumakovs.su
108819 Moscow, Russia
A. Zhitkevich
Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)108819 Moscow, Russia
D. Avdoshina
Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)108819 Moscow, Russia
D. Tanygina
Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)108819 Moscow, Russia
V. Apolokhov
Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)108819 Moscow, Russia
T. Gorodnicheva
Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis); Pirogov Russian National Research Medical University108819 Moscow, Russia; 117997 Moscow, Russia
D. Kostyushev
Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University); Lomonosov Moscow State University; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences119048 Moscow, Russia; 119192 Moscow, Russia; 119991 Moscow, Russia
E. Bayurova
Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)108819 Moscow, Russia
I. Gordeychuk
Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis); Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)108819 Moscow, Russia; 117418 Moscow, Russia
Bibliografia
- Kramvis, A. (2014) Genotypes and genetic variability of hepatitis B virus, Intervirology, 57, 141-150, https://doi.org/10.1159/000360947.
- Yang, R., Ko, Y.-H., Li, F., Lokareddy, R. K., Hou, C.-F. D., Kim, C., Klein, S., Antolínez, S., Marín, J. F., PérezSegura, C., Jarrold, M. F., Zlotnick, A., Hadden-Perilla, J. A., and Cingolani, G. (2024) Structural basis for nuclear import of hepatitis B virus (HBV) nucleocapsid core, Sci. Adv., 10, eadi7606, https://doi.org/10.1126/sciadv.adi7606.
- Tsukuda, S., and Watashi, K. (2020) Hepatitis B virus biology and life cycle, Antiviral Res., 182, 104925, https://doi.org/10.1016/j.antiviral.2020.104925.
- Kim, D. H., Kang, H. S., and Kim, K.-H. (2016) Roles of hepatocyte nuclear factors in hepatitis B virus infection, World J. Gastroenterol., 22, 7017, https://doi.org/10.3748/wjg.v22.i31.7017.
- Ko, C., Chakraborty, A., Chou, W.-M., Hasreiter, J., Wettengel, J. M., Stadler, D., Bester, R., Asen, T., Zhang, K., Wisskirchen, K., McKeating, J. A., Ryu, W.-S., and Protzer, U. (2018) Hepatitis B virus genome recycling and de novo secondary infection events maintain stable cccDNA levels, J. Hepatol., 69, 1231-1241, https://doi.org/10.1016/j.jhep.2018.08.012.
- (2024) Global Hepatitis Report 2024: Action for Access in Low- and Middle-Income Countries, 1st ed., World Health Organization, Geneva.
- Song, J. E., and Kim, D. Y. (2016) Diagnosis of hepatitis B, Ann. Translat. Med., 4, 338-338, https://doi.org/10.21037/atm.2016.09.11.
- Vittal, A., and Ghany, M. G. (2019) WHO Guidelines for Prevention, Care and Treatment of Individuals Infected with HBV, Clinics in Liver Disease, 23, 417-432, https://doi.org/10.1016/j.cld.2019.04.008.
- Raimondo, G., Locarnini, S., Pollicino, T., Levrero, M., Zoulim, F., Lok, A. S., Allain, J.-P., Berg, T., Bertoletti, A., Brunetto, M. R., Bruno, R., Chen, D.-S., Coppola, N., Cornberg, M., Craxì, A., Dandri, M., Di Marco, V., Ferrari, C., Gaeta, G. B., Glebe, D., et al. (2019) Update of the statements on biology and clinical impact of occult hepatitis B virus infection, J. Hepatol., 71, 397-408, https://doi.org/10.1016/j.jhep.2019.03.034.
- Bock, C.-T., Schranz, P., Schröder, C. H., and Zentgraf, H. (1994) Hepatitis B virus genome is organized into nucleosomes in the nucleus of the infected cell, Virus Genes, 8, 215-229, https://doi.org/10.1007/BF01703079.
- Ghosh, S., Chakraborty, A., and Banerjee, S. (2021) Persistence of hepatitis B virus infection: a multi-faceted player for hepatocarcinogenesis, Front. Microbiol., 12, 678537, https://doi.org/10.3389/fmicb.2021.678537.
- Yan, H., Zhong, G., Xu, G., He, W., Jing, Z., Gao, Z., Huang, Y., Qi, Y., Peng, B., Wang, H., Fu, L., Song, M., Chen, P., Gao, W., Ren, B., Sun, Y., Cai, T., Feng, X., Sui, J., and Li, W. (2012) Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus, eLife, 1, e00049, https://doi.org/10.7554/eLife.00049.
- Schieck, A., Schulze, A., Gähler, C., Müller, T., Haberkorn, U., Alexandrov, A., Urban, S., and Mier, W. (2013) Hepatitis B virus hepatotropism is mediated by specific receptor recognition in the liver and not restricted to susceptible hosts, Hepatology, 58, 43-53, https://doi.org/10.1002/hep.26211.
- Barker, L. F., Maynard, J. E., Purcell, R. H., Hoofnagle, J. H., Berquist, K. R., and London, W. T. (1975) Viral hepatitis, type B, in experimental animals, Am. J. Med. Sci., 270, 189-195, https://doi.org/10.1097/00000441-197507000-00026.
- Shikata, T., Karasawa, T., and Abe, K. (1980) Two distinct types of hepatitis in experimental hepatitis B virus infection, Am. J. Pathol., 99, 353-368.
- Maynard, J. E., Berquist, K. R., Krushak, D. H., and Purcell, R. H. (1972) Experimental infection of chimpanzees with the virus of hepatitis B, Nature, 237, 514-515, https://doi.org/10.1038/237514a0.
- Maynard, J. E., Krushak, D. H., Bradley, D. W., and Berquist, K. R. (1975) Infectivity studies of hepatitis A and B in non-human primates, Dev. Biol. Standard., 30, 229-235.
- Ibrahim, A. B., Vyas, G. N., and Prince, A. M. (1974) Studies on delayed hypersensitivity to hepatitis B antigen in chimpanzees, Clin. Exp. Immunol., 17, 311-318.
- Buynak, E. B., Roehm, R. R., Tytell, A. A., Bertland, A. U., Lampson, G. P., and Hilleman, M. R. (1976) Development and chimpanzee testing of a vaccine against human hepatitis B, Exp. Biol. Med., 151, 694-700, https://doi.org/10.3181/00379727-151-39288.
- CDC (1982) Recommendation of the Immunization Practices Advisory Committee (ACIP). Inactivated hepatitis B virus vaccine, Morbid. Mortal. Weekly Rep., 31, 317-322.
- Itoh, Y., Takai, E., Ohnuma, H., Kitajima, K., Tsuda, F., Machida, A., Mishiro, S., Nakamura, T., Miyakawa, Y., and Mayumi, M. (1986) A synthetic peptide vaccine involving the product of the pre-S(2) region of hepatitis B virus DNA: protective efficacy in chimpanzees, Proc. Natl. Acad. Sci. USA, 83, 9174-9178, https://doi.org/10.1073/pnas.83.23.9174.
- Tabor, E., Copeland, J. A., Mann, G. F., Howard, C. R., Skelly, J., Snoy, P., Zuckerman, A. J., and Gerety, R. J. (1981) Nondetection of infectious hepatitis B virus in a human hepatoma cell line producing hepatitis B surface antigen, Intervirology, 15, 82-86, https://doi.org/10.1159/000149217.
- Davis, H. L., McCluskie, M. J., Gerin, J. L., and Purcell, R. H. (1996) DNA vaccine for hepatitis B: evidence for immunogenicity in chimpanzees and comparison with other vaccines, Proc. Natl. Acad. Sci. USA, 93, 7213-7218, https://doi.org/10.1073/pnas.93.14.7213.
- McAleer, W. J., Buynak, E. B., Maigetter, R. Z., Wampler, D. E., Miller, W. J., and Hilleman, M. R. (1984) Human hepatitis B vaccine from recombinant yeast, Nature, 307, 178-180, https://doi.org/10.1038/307178a0.
- Guidotti, L. G., Rochford, R., Chung, J., Shapiro, M., Purcell, R., and Chisari, F. V. (1999) Viral clearance without destruction of infected cells during acute HBV infection, Science, 284, 825-829, https://doi.org/10.1126/science.284.5415.825.
- Gheit, T., Sekkat, S., Cova, L., Chevallier, M., Petit, M. A., Hantz, O., Lesénéchal, M., Benslimane, A., Trépo, C., and Chemin, I. (2002) Experimental transfection of Macaca sylvanus with cloned human hepatitis B virus, J. Gen. Virol., 83, 1645-1649, https://doi.org/10.1099/0022-1317-83-7-1645.
- Dupinay, T., Gheit, T., Roques, P., Cova, L., Chevallier-Queyron, P., Tasahsu, S.., Le Grand, R., Simon, F., Cordier, G., Wakrim, L., Benjelloun, S., Trépo, C., and Chemin, I. (2013) Discovery of naturally occurring transmissible chronic hepatitis B virus infection among Macaca fascicularis from mauritius island, Hepatology, 58, 1610-1620, https://doi.org/10.1002/hep.26428.
- Burwitz, B. J., Wettengel, J. M., Mück-Häusl, M. A., Ringelhan, M., Ko, C., Festag, M. M., Hammond, K. B., Northrup, M., Bimber, B. N., Jacob, T., Reed, J. S., Norris, R., Park, B., Moller-Tank, S., Esser, K., Greene, J. M., Wu, H. L., Abdulhaqq, S., Webb, G., Sutton, W. F., et al. (2017) Hepatocytic expression of human sodium-taurocholate cotransporting polypeptide enables hepatitis B virus infection of macaques, Nat. Commun., 8, 2146, https://doi.org/10.1038/s41467-017-01953-y.
- Kriegs, J. O., Churakov, G., Jurka, J., Brosius, J., and Schmitz, J. (2007) Evolutionary history of 7SL RNA-derived SINEs in supraprimates, Trends Genet., 23, 158-161, https://doi.org/10.1016/j.tig.2007.02.002.
- Walter, E., Keist, R., Niederöst, B., Pult, I., and Blum, H. E. (1996) Hepatitis B virus infection of tupaia hepatocytes in vitro and in vivo, Hepatology, 24, 1-5, https://doi.org/10.1002/hep.510240101.
- Wang, Q., Schwarzenberger, P., Yang, F., Zhang, J., Su, J., Yang, C., Cao, J., Ou, C., Liang, L., Shi, J., Yang, F., Wang, D., Wang, J., Wang, X., Ruan, P., and Li, Y. (2012) Experimental chronic hepatitis B infection of neonatal tree shrews (Tupaia belangeri chinensis): A model to study molecular causes for susceptibility and disease progression to chronic hepatitis in humans, Virol. J., 9, 170, https://doi.org/10.1186/1743-422X-9-170.
- Yang, C., Ruan, P., Ou, C., Su, J., Cao, J., Luo, C., Tang, Y., Wang, Q., Qin, H., Sun, W., and Li, Y. (2015) Chronic hepatitis B virus infection and occurrence of hepatocellular carcinoma in tree shrews (Tupaia belangeri chinensis), Virol. J., 12, 26, https://doi.org/10.1186/s12985-015-0256-x.
- Lempp, F. A., Wiedtke, E., Qu, B., Roques, P., Chemin, I., Vondran, F. W. R., Le Grand, R., Grimm, D., and Urban, S. (2017) Sodium taurocholate cotransporting polypeptide is the limiting host factor of hepatitis B virus infection in macaque and pig hepatocytes, Hepatology, 66, 703-716, https://doi.org/10.1002/hep.29112.
- Messaoudi, I., Estep, R., Robinson, B., and Wong, S. W. (2011) Nonhuman primate models of human immunology, Antioxid. Redox Signal., 14, 261-273, https://doi.org/10.1089/ars.2010.3241.
- Biswas, S., Rust, L. N., Wettengel, J. M., Yusova, S., Fischer, M., Carson, J. N., Johnson, J., Wei, L., Thode, T., Kaadige, M. R., Sharma, S., Agbaria, M., Bimber, B. N., Tu, T., Protzer, U., Ploss, A., Smedley, J. V., Golomb, G., Sacha, J. B., and Burwitz, B. J. (2022) Long-term hepatitis B virus infection of rhesus macaques requires suppression of host immunity, Nat. Commun., 13, 2995, https://doi.org/10.1038/s41467-022-30593-0.
- Mason, W. S., Seal, G., and Summers, J. (1980) Virus of Pekin ducks with structural and biological relatedness to human hepatitis B virus, J. Virol., 36, 829-836, https://doi.org/10.1128/jvi.36.3.829-836.1980.
- Mandart, E., Kay, A., and Galibert, F. (1984) Nucleotide sequence of a cloned duck hepatitis B virus genome: comparison with woodchuck and human hepatitis B virus sequences, J. Virol., 49, 782-792, https://doi.org/10.1128/jvi.49.3.782-792.1984.
- Foster, W. K., Miller, D. S., Scougall, C. A., Kotlarski, I., Colonno, R. J., and Jilbert, A. R. (2005) Effect of antiviral treatment with entecavir on age- and dose-related outcomes of duck hepatitis B virus infection, J. Virol., 79, 5819-5832, https://doi.org/10.1128/JVI.79.9.5819-5832.2005.
- Campagna, M. R., Liu, F., Mao, R., Mills, C., Cai, D., Guo, F., Zhao, X., Ye, H., Cuconati, A., Guo, H., Chang, J., Xu, X., Block, T. M., and Guo, J.-T. (2013) Sulfamoylbenzamide derivatives inhibit the assembly of hepatitis B virus nucleocapsids, J. Virol., 87, 6931-6942, https://doi.org/10.1128/JVI.00582-13.
- Schaefer, S. (2007) Hepatitis B virus taxonomy and hepatitis B virus genotypes, World J. Gastroenterol., 13, 14, https://doi.org/10.3748/wjg.v13.i1.14.
- Tong, S., Li, J., and Wands, J. R. (1999) Carboxypeptidase D is an avian hepatitis B virus receptor, J. Virol., 73, 8696-8702, https://doi.org/10.1128/JVI.73.10.8696-8702.1999.
- Cova, L., Duflot, A., Prave, M., and Trepo, C. (1993) Duck hepatitis B virus infection, aflatoxin B1 and liver cancer in ducks, in Research in Chronic Viral Hepatitis (Gerlich, W. H., ed), Springer Vienna, Vienna, pp. 81-87, https://doi.org/10.1007/978-3-7091-9312-9_9.
- Lanford, R. E., Chavez, D., Brasky, K. M., Burns, R. B., and Rico-Hesse, R. (1998) Isolation of a hepadnavirus from the woolly monkey, a New World primate, Proc. Natl. Acad. Sci. USA, 95, 5757-5761, https://doi.org/10.1073/pnas.95.10.5757.
- Lanford, R. E., Chavez, D., Barrera, A., and Brasky, K. M. (2003) An infectious clone of woolly monkey hepatitis B virus, J. Virol., 77, 7814-7819, https://doi.org/10.1128/JVI.77.14.7814-7819.2003.
- Chen, C. Y., Winer, B. Y., Chavez, D., Guerra, B., Brasky, K. M., Eng, S., Salas, E., Tam, D., Simmons, J. H., Abee, C. R., Delaney, W. E., Ploss, A., Lanford, R. E., and Voitenleitner, C. (2020) Woolly monkey-HBV infection in squirrel monkeys as a surrogate nonhuman primate model of HBV infection, Hepatol. Commun., 4, 371-386, https://doi.org/10.1002/hep4.1471.
- Mulrooney-Cousins, P. M., and Michalak, T. I. (2015) Asymptomatic hepadnaviral persistence and its consequences in the Woodchuck model of occult hepatitis B virus infection, J. Clin. Translat. Hepatol., 3, 211-219, https://doi.org/10.14218/JCTH.2015.00020.
- Summers, J., Smolec, J. M., and Snyder, R. (1978) A virus similar to human hepatitis B virus associated with hepatitis and hepatoma in woodchucks, Proc. Natl. Acad. Sci. USA, 75, 4533-4537, https://doi.org/10.1073/pnas.75.9.4533.
- Hodgson, P. D., and Michalak, T. I. (2001) Augmented hepatic interferon gamma expression and T-cell influx characterize acute hepatitis progressing to recovery and residual lifelong virus persistence in experimental adult woodchuck hepatitis virus infection, Hepatology, 34, 1049-1059, https://doi.org/10.1053/jhep.2001.29004.
- Korba, B. E., Wells, F. V., Baldwin, B., Cote, P. J., Tennant, B. C., Popper, H., and Gerin, J. L. (1989) Hepatocellular carcinoma in woodchuck hepatitis virus-infected woodchucks: Presence of viral DNA in tumor tissue from chronic carriers and animals serologically recovered from acute infections, Hepatology, 9, 461-470, https://doi.org/10.1002/hep.1840090321.
- Mason, W. S., Jilbert, A. R., and Summers, J. (2005) Clonal expansion of hepatocytes during chronic woodchuck hepatitis virus infection, Proc. Natl. Acad. Sci. USA, 102, 1139-1144, https://doi.org/10.1073/pnas.0409332102.
- Colonno, Richard J., Genovesi, Eugene V., Medina, I., Lamb, L., Durham, Stephen K., Huang, M. L., Corey, L., Littlejohn, M., Locarnini, S., Tennant, Bud C., Rose, B., and Junius, C. M. (2001) Long‐term entecavir treatment results in sustained antiviral efficacy and prolonged life span in the woodchuck model of chronic hepatitis infection, J. Infect. Dis., 184, 1236-1245, https://doi.org/10.1086/324003.
- Wang, B.-J., Tian, Y.-J., Meng, Z.-J., Jiang, M., Wei, B.-Q., Tao, Y.-Q., Fan, W., Li, A.-Y., Bao, J.-J., Li, X.-Y., Zhang, Z.-M., Wang, Z.-D., Wang, H., Roggendorf, M., Lu, M.-J., and Yang, D.-L. (2011) Establishing a new animal model for hepadnaviral infection: susceptibility of Chinese Marmota-species to woodchuck hepatitis virus infection, J. Gen. Virol., 92, 681-691, https://doi.org/10.1099/vir.0.025023-0.
- Zhu, B., Zhu, Z., Wang, J., Huang, S., Li, F., Wang, L., Liu, Y., Yan, Q., Zhou, S., Lu, M., Yang, D., and Wang, B. (2018) Chinese woodchucks with different susceptibility to WHV infection differ in their genetic background exemplified by cytochrome B and MHC-DRB molecules, Virol. J., 15, 101, https://doi.org/10.1186/s12985-018-1010-y.
- Chisari, F. V., Pinkert, C. A., Milich, D. R., Filippi, P., McLachlan, A., Palmiter, R. D., and Brinster, R. L. (1985) A transgenic mouse model of the chronic hepatitis B surface antigen carrier state, Science, 230, 1157-1160, https://doi.org/10.1126/science.3865369.
- Milich, D. R., Jones, J. E., Hughes, J. L., Price, J., Raney, A. K., and McLachlan, A. (1990) Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero? Proc. Natl. Acad. Sci. USA, 87, 6599-6603, https://doi.org/10.1073/pnas.87.17.6599.
- Kim, C.-M., Koike, K., Saito, I., Miyamura, T., and Jay, G. (1991) HBx gene of hepatitis B virus induces liver cancer in transgenic mice, Nature, 351, 317-320, https://doi.org/10.1038/351317a0.
- Guidotti, L. G., Matzke, B., Schaller, H., and Chisari, F. V. (1995) High-level hepatitis B virus replication in transgenic mice, J. Virol., 69, 6158-6169, https://doi.org/10.1128/jvi.69.10.6158-6169.1995.
- Akbar, S. M. F., and Onji, M. (1998) Hepatitis B virus (HBV)‐transgenic mice as an investigative tool to study immunopathology during HBV infection, Int. J. Exp. Pathol., 79, 279-291, https://doi.org/10.1046/j.1365-2613.1998.740406.x.
- Crawford, D. R., Ostrowski, S., Vakharia, D., Ilic, Z., and Sell, S. (2006) Separate origins of hepatitis B virus surface antigen-negative foci and hepatocellular carcinomas in transgenic HBsAg (alb/psx) mice, Am. J. Pathol., 169, 223-232, https://doi.org/10.2353/ajpath.2006.051284.
- Isogawa, M., Chung, J., Murata, Y., Kakimi, K., and Chisari, F. V. (2013) CD40 activation rescues antiviral CD8+ T cells from PD-1-mediated exhaustion, PLoS Pathog., 9, e1003490, https://doi.org/10.1371/journal.ppat.1003490.
- Tian, Y., Kuo, C.-F., Akbari, O., and Ou, J.-H. J. (2016) Maternal-derived hepatitis B virus e antigen alters macrophage function in offspring to drive viral persistence after vertical transmission, Immunity, 44, 1204-1214, https://doi.org/10.1016/j.immuni.2016.04.008.
- Yan, H., Peng, B., He, W., Zhong, G., Qi, Y., Ren, B., Gao, Z., Jing, Z., Song, M., Xu, G., Sui, J., and Li, W. (2013) Molecular determinants of hepatitis B and D virus entry restriction in mouse sodium taurocholate cotransporting polypeptide, J. Virol., 87, 7977-7991, https://doi.org/10.1128/JVI.03540-12.
- Huang, L. R., Gäbel, Y. A., Graf, S., Arzberger, S., Kurts, C., Heikenwalder, M., Knolle, P. A., and Protzer, U. (2012) Transfer of HBV genomes using low doses of adenovirus vectors leads to persistent infection in immune competent mice, Gastroenterology, 142, 1447-1450.e1443, https://doi.org/10.1053/j.gastro.2012.03.006.
- Li, L., Li, S., Zhou, Y., Yang, L., Zhou, D., Yang, Y., Lu, M., Yang, D., and Song, J. (2017) The dose of HBV genome contained plasmid has a great impact on HBV persistence in hydrodynamic injection mouse model, Virol. J., 14, 205, https://doi.org/10.1186/s12985-017-0874-6.
- John Von Freyend, M., Untergasser, A., Arzberger, S., Oberwinkler, H., Drebber, U., Schirmacher, P., and Protzer, U. (2011) Sequential control of hepatitis B virus in a mouse model of acute, self-resolving hepatitis B: control of HBV infection in mice, J. Viral Hepatit., 18, 216-226, https://doi.org/10.1111/j.1365-2893.2010.01302.x.
- Huang, L.-R., Wu, H.-L., Chen, P.-J., and Chen, D.-S. (2006) An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection, Proc. Natl. Acad. Sci. USA, 103, 17862-17867, https://doi.org/10.1073/pnas.0608578103.
- Li, G., Zhu, Y., Shao, D., Chang, H., Zhang, X., Zhou, D., Gao, Y., Lan, K., and Deng, Q. (2018) Recombinant covalently closed circular DNA of hepatitis B virus induces long‐term viral persistence with chronic hepatitis ina mouse model, Hepatology, 67, 56-70, https://doi.org/10.1002/hep.29406.
- Gorsuch, C. L., Nemec, P., Yu, M., Xu, S., Han, D., Smith, J., Lape, J., Van Buuren, N., Ramirez, R., Muench, R. C., Holdorf, M. M., Feierbach, B., Falls, G., Holt, J., Shoop, W., Sevigny, E., Karriker, F., Brown, R. V., Joshi, A., Goodwin, T., et al. (2022) Targeting the hepatitis B cccDNA with a sequence-specific ARCUS nuclease to eliminate hepatitis B virus in vivo, Mol. Ther., 30, 2909-2922, https://doi.org/10.1016/j.ymthe.2022.05.013.
- Ilan, E., Burakova, T., Dagan, S., Nussbaum, O., Lubin, I., Eren, R., Ben-Moshe, O., Arazi, J., Berr, S., Neville, L., Yuen, L., Mansour, T. S., Gillard, J., Eid, A., Jurim, O., Shouval, D., Reisner, Y., and Galun, E. (1999) The hepatitis B virus-trimera mouse: a model for human Hbv infection and evaluation of anti-Hbv therapeutic agents, Hepatology, 29, 553-562, https://doi.org/10.1002/hep.510290228.
- Feitelson, M. A., Clayton, M. M., Sun, B., and Schinazi, R. F. (2007) Development of a novel mouse model to evaluate drug candidates against hepatitis B virus, Antiviral Chem. Chemother., 18, 213-223, https://doi.org/10.1177/095632020701800405.
- Schinazi, R. F., Bassit, L., Clayton, M. M., Sun, B., Kohler, J. J., Obikhod, A., Arzumanyan, A., and Feitelson, M. A. (2012) Evaluation of single and combination therapies with tenofovir disoproxil fumarate and emtricitabine in vitro and in a robust mouse model supporting high levels of hepatitis B virus replication, Antimicrob. Agents Chemother., 56, 6186-6191, https://doi.org/10.1128/AAC.01483-12.
- Brown, J. J., Parashar, B., Moshage, H., Tanaka, K. E., Engelhardt, D., Rabbani, E., Roy-Chowdhury, N., and Roy-Chowdhury, J. (2000) A long-term hepatitis B viremia model generated by transplanting nontumorigenic immortalized human hepatocytes in Rag-2-deficient mice, Hepatology, 31, 173-181, https://doi.org/10.1002/hep.510310126.
- Dandri, M., Burda, M. R., Török, E., Pollok, J. M., Iwanska, A., Sommer, G., Rogiers, X., Rogler, C. E., Gupta, S., Will, H., Greten, H., and Petersen, J. (2001) Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus, Hepatology, 33, 981-988, https://doi.org/10.1053/jhep.2001.23314.
- Meuleman, P., Libbrecht, L., De Vos, R., De Hemptinne, B., Gevaert, K., Vandekerckhove, J., Roskams, T., and Leroux‐Roels, G. (2005) Morphological and biochemical characterization of a human liver in a uPA‐SCID mouse chimera, Hepatology, 41, 847-856, https://doi.org/10.1002/hep.20657.
- Tsuge, M., Hiraga, N., Takaishi, H., Noguchi, C., Oga, H., Imamura, M., Takahashi, S., Iwao, E., Fujimoto, Y., Ochi, H., Chayama, K., Tateno, C., and Yoshizato, K. (2005) Infection of human hepatocyte chimeric mouse with genetically engineered hepatitis B virus, Hepatology, 42, 1046-1054, https://doi.org/10.1002/hep.20892.
- Bissig, K.-D., Le, T. T., Woods, N.-B., and Verma, I. M. (2007) Repopulation of adult and neonatal mice with human hepatocytes: a chimeric animal model, Proc. Natl. Acad. Sci. USA, 104, 20507-20511, https://doi.org/10.1073/pnas.0710528105.
- Bissig, K.-D., Wieland, S. F., Tran, P., Isogawa, M., Le, T. T., Chisari, F. V., and Verma, I. M. (2010) Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment, J. Clin. Invest., 120, 924-930, https://doi.org/10.1172/JCI40094.
- Long, K. R., Lomonosova, E., Li, Q., Ponzar, N. L., Villa, J. A., Touchette, E., Rapp, S., Liley, R. M., Murelli, R. P., Grigoryan, A., Buller, R. M., Wilson, L., Bial, J., Sagartz, J. E., and Tavis, J. E. (2018) Efficacy of hepatitis B virus ribonuclease H inhibitors, a new class of replication antagonists, in FRG human liver chimeric mice, Antiviral Res., 149, 41-47, https://doi.org/10.1016/j.antiviral.2017.11.008.
- Bility, M. T., Cheng, L., Zhang, Z., Luan, Y., Li, F., Chi, L., Zhang, L., Tu, Z., Gao, Y., Fu, Y., Niu, J., Wang, F., and Su, L. (2014) Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and M2-like macrophages, PLoS Pathog., 10, e1004032, https://doi.org/10.1371/journal.ppat.1004032.
- Strick-Marchand, H., Dusséaux, M., Darche, S., Huntington, N. D., Legrand, N., Masse-Ranson, G., Corcuff, E., Ahodantin, J., Weijer, K., Spits, H., Kremsdorf, D., and Di Santo, J. P. (2015) A novel mouse model for stable engraftment of a human immune system and human hepatocytes, PLoS One, 10, e0119820, https://doi.org/10.1371/journal.pone.0119820.
- Dusséaux, M., Masse-Ranson, G., Darche, S., Ahodantin, J., Li, Y., Fiquet, O., Beaumont, E., Moreau, P., Rivière, L., Neuveut, C., Soussan, P., Roingeard, P., Kremsdorf, D., Di Santo, J. P., and Strick-Marchand, H. (2017) Viral load affects the immune response to HBV in mice with humanized immune system and liver, Gastroenterology, 153, 1647-1661.e1649, https://doi.org/10.1053/j.gastro.2017.08.034.
- Yuan, L., Jiang, J., Liu, X., Zhang, Y., Zhang, L., Xin, J., Wu, K., Li, X., Cao, J., Guo, X., Shi, D., Li, J., Jiang, L., Sun, S., Wang, T., Hou, W., Zhang, T., Zhu, H., Zhang, J., Yuan, Q., et al. (2019) HBV infection-induced liver cirrhosis development in dual-humanised mice with human bone mesenchymal stem cell transplantation, Gut, 68, 2044-2056, https://doi.org/10.1136/gutjnl-2018-316091.
- Gomez-Lechon, M., Donato, M., Castell, J., and Jover, R. (2004) Human hepatocytes in primary culture: the choice to investigate drug metabolism in man, Curr. Drug Metab., 5, 443-462, https://doi.org/10.2174/1389200043335414.
- Yoneda, M., Hyun, J., Jakubski, S., Saito, S., Nakajima, A., Schiff, E. R., and Thomas, E. (2016) Hepatitis B virus and DNA stimulation trigger a rapid innate immune response through NF-κB, J. Immunol., 197, 630-643, https://doi.org/10.4049/jimmunol.1502677.
- Guillouzo, A. (1998) Liver cell models in in vitro toxicology, Environ. Health Perspect., 106, 511-532, https://doi.org/10.1289/ehp.98106511.
- Xiang, C., Du, Y., Meng, G., Soon Yi, L., Sun, S., Song, N., Zhang, X., Xiao, Y., Wang, J., Yi, Z., Liu, Y., Xie, B., Wu, M., Shu, J., Sun, D., Jia, J., Liang, Z., Sun, D., Huang, Y., Shi, Y., et al. (2019) Long-term functional maintenance of primary human hepatocytes in vitro, Science, 364, 399-402, https://doi.org/10.1126/science.aau7307.
- Gripon, P., Diot, C., Thézé, N., Fourel, I., Loreal, O., Brechot, C., and Guguen-Guillouzo, C. (1988) Hepatitis B virus infection of adult human hepatocytes cultured in the presence of dimethyl sulfoxide, J. Virol., 62, 4136-4143, https://doi.org/10.1128/jvi.62.11.4136-4143.1988.
- Galle, P. R., Hagelstein, J., Kommerell, B., Volkmann, M., Schranz, P., and Zentgraf, H. (1994) In vitro experimental infection of primary human hepatocytes with hepatitis B virus, Gastroenterology, 106, 664-673, https://doi.org/10.1016/0016-5085(94)90700-5.
- Nakabayashi, H., Taketa, K., Miyano, K., Yamane, T., and Sato, J. (1982) Growth of human hepatoma cells lines with differentiated functions in chemically defined medium, Cancer Res., 42, 3858-3863.
- Chang, C. M., Jeng, K. S., Hu, C. P., Lo, S. J., Su, T. S., Ting, L. P., Chou, C. K., Han, S. H., Pfaff, E., and Salfeld, J. (1987) Production of hepatitis B virus in vitro by transient expression of cloned HBV DNA in a hepatoma cell line, EMBO J., 6, 675-680, https://doi.org/10.1002/j.1460-2075.1987.tb04807.x.
- Hoare, J., Henkler, F., Dowling, J. J., Errington, W., Goldin, R. D., Fish, D., and McGarvey, M. J. (2001) Subcellular localisation of the X protein in HBV infected hepatocytes, J. Med. Virol., 64, 419-426, https://doi.org/10.1002/jmv.1067.
- Elizalde, M. M., Tadey, L., Mammana, L., Quarleri, J. F., Campos, R. H., and Flichman, D. M. (2021) Biological characterization of hepatitis B virus genotypes: their role in viral replication and antigen expression, Front. Microbiol., 12, 758613, https://doi.org/10.3389/fmicb.2021.758613.
- Hui, E. K.-W., Chen, K.-L., and Lo, S. J. (1999) Hepatitis B virus maturation is affected by the incorporation of core proteins having a C-terminal substitution of arginine or lysine stretches, J. Gen. Virol., 80, 2661-2671, https://doi.org/10.1099/0022-1317-80-10-2661.
- Thompson, A. J., Colledge, D., Rodgers, S., Wilson, R., Revill, P., Desmond, P., Mansell, A., Visvanathan, K., and Locarnini, S. (2009) Stimulation of the interleukin-1 receptor and Toll-like receptor 2 inhibits hepatitis B virus replication in hepatoma cell lines in vitro, Antiviral Ther., 14, 797-808, https://doi.org/10.3851/IMP1294.
- Chen, H.-C., Chou, C.-K., Sun, C.-M., and Yeh, S. F. (1997) Suppressive effects of destruxin B on hepatitis B virus surface antigen gene expression in human hepatoma cells, Antiviral Res., 34, 137-144, https://doi.org/10.1016/S0166-3542(97)01031-0.
- Phillips, S., Chokshi, S., Chatterji, U., Riva, A., Bobardt, M., Williams, R., Gallay, P., and Naoumov, N. V. (2015) Alisporivir inhibition of hepatocyte cyclophilins reduces HBV replication and hepatitis B surface antigen production, Gastroenterology, 148, 403-414.e407, https://doi.org/10.1053/j.gastro.2014.10.004.
- Lin, S.-R., Yang, H.-C., Kuo, Y.-T., Liu, C.-J., Yang, T.-Y., Sung, K.-C., Lin, Y.-Y., Wang, H.-Y., Wang, C.-C., Shen, Y.-C., Wu, F.-Y., Kao, J.-H., Chen, D.-S., and Chen, P.-J. (2014) The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo, Mol. Ther. Nucleic Acids, 3, e186, https://doi.org/10.1038/mtna.2014.38.
- Li, F., Wang, Z., Hu, F., and Su, L. (2020) Cell Culture Models and Animal Models for HBV Study, in Hepatitis B Virus Infection (Tang, H. ed) Springer Singapore, Singapore, pp. 109-135, https://doi.org/10.1007/978-981-13-9151-4_5.
- Sells, M. A., Chen, M. L., and Acs, G. (1987) Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA, Proc. Natl. Acad. Sci. USA, 84, 1005-1009, https://doi.org/10.1073/pnas.84.4.1005.
- . Acs, G., Sells, M. A., Purcell, R. H., Price, P., Engle, R., Shapiro, M., and Popper, H. (1987) Hepatitis B virus produced by transfected Hep G2 cells causes hepatitis in chimpanzees, Proc. Natl. Acad. Sci. USA, 84, 4641-4644, https://doi.org/10.1073/pnas.84.13.4641.
- . Ding, X. R., Yang, J., Sun, D. C., Lou, S. K., and Wang, S. Q. (2008) Whole genome expression profiling of hepatitis B virus-transfected cell line reveals the potential targets of anti-HBV drugs, Pharmacogenomics J., 8, 61-70, https://doi.org/10.1038/sj.tpj.6500459.
- . Ladner, S. K., Otto, M. J., Barker, C. S., Zaifert, K., Wang, G. H., Guo, J. T., Seeger, C., and King, R. W. (1997) Inducible expression of human hepatitis B virus (HBV) in stably transfected hepatoblastoma cells: a novel system for screening potential inhibitors of HBV replication, Antimicrob. Agents Chemother., 41, 1715-1720, https://doi.org/10.1128/AAC.41.8.1715.
- . Guo, H., Jiang, D., Zhou, T., Cuconati, A., Block, T. M., and Guo, J.-T. (2007) Characterization of the intracellular deproteinized relaxed circular DNA of hepatitis B virus: an intermediate of covalently closed circular DNA formation, J. Virol., 81, 12472-12484, https://doi.org/10.1128/JVI.01123-07.
- . Cai, D., Mills, C., Yu, W., Yan, R., Aldrich, C. E., Saputelli, J. R., Mason, W. S., Xu, X., Guo, J.-T., Block, T. M., Cuconati, A., and Guo, H. (2012) Identification of disubstituted sulfonamide compounds as specific inhibitors of hepatitis B virus covalently closed circular DNA formation, Antimicrob. Agents Chemother., 56, 4277-4288, https://doi.org/10.1128/AAC.00473-12.
- . Gripon, P., Rumin, S., Urban, S., Le Seyec, J., Glaise, D., Cannie, I., Guyomard, C., Lucas, J., Trepo, C., and Guguen-Guillouzo, C. (2002) Infection of a human hepatoma cell line by hepatitis B virus, Proc. Natl. Acad. Sci. USA, 99, 15655-15660, https://doi.org/10.1073/pnas.232137699.
- . Schulze, A., Mills, K., Weiss, T. S., and Urban, S. (2012) Hepatocyte polarization is essential for the productive entry of the hepatitis B virus, Hepatology, 55, 373-383, https://doi.org/10.1002/hep.24707.
- . Hantz, O., Parent, R., Durantel, D., Gripon, P., Guguen-Guillouzo, C., and Zoulim, F. (2009) Persistence of the hepatitis B virus covalently closed circular DNA in HepaRG human hepatocyte-like cells, J. Gen. Virol., 90, 127-135, https://doi.org/10.1099/vir.0.004861-0.
- . Urban, S., Bartenschlager, R., Kubitz, R., and Zoulim, F. (2014) Strategies to inhibit entry of HBV and HDV into hepatocytes, Gastroenterology, 147, 48-64, https://doi.org/10.1053/j.gastro.2014.04.030.
- . Veloso Alves Pereira, I., Buchmann, B., Sandmann, L., Sprinzl, K., Schlaphoff, V., Döhner, K., Vondran, F., Sarrazin, C., Manns, M. P., Pinto Marques Souza De Oliveira, C., Sodeik, B., Ciesek, S., and Von Hahn, T. (2015) Primary biliary acids inhibit hepatitis D virus (HDV) entry into human hepatoma cells expressing the sodium-taurocholate cotransporting polypeptide (NTCP), PLoS One, 10, e0117152, https://doi.org/10.1371/journal.pone.0117152.
- . Ni, Y., Lempp, F. A., Mehrle, S., Nkongolo, S., Kaufman, C., Fälth, M., Stindt, J., Königer, C., Nassal, M., Kubitz, R., Sültmann, H., and Urban, S. (2014) Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes, Gastroenterology, 146, 1070-1083.e1076, https://doi.org/10.1053/j.gastro.2013.12.024.
- . König, A., Yang, J., Jo, E., Park, K. H. P., Kim, H., Than, T. T., Song, X., Qi, X., Dai, X., Park, S., Shum, D., Ryu, W.-S., Kim, J.-H., Yoon, S. K., Park, J. Y., Ahn, S. H., Han, K.-H., Gerlich, W. H., and Windisch, M. P. (2019) Efficient long-term amplification of hepatitis B virus isolates after infection of slow proliferating HepG2-NTCP cells, J. Hepatol., 71, 289-300, https://doi.org/10.1016/j.jhep.2019.04.010.
- . Köck, J., Nassal, M., MacNelly, S., Baumert, T. F., Blum, H. E., and Von Weizsäcker, F. (2001) Efficient infection of primary tupaia hepatocytes with purified human and woolly monkey hepatitis B virus, J. Virol., 75, 5084-5089, https://doi.org/10.1128/JVI.75.11.5084-5089.2001.
- . Köck, J., Baumert, T. F., Delaney, W. E., Blum, H. E., and Von Weizsäcker, F. (2003) Inhibitory effect of adefovir and lamivudine on the initiation of hepatitis B virus infection in primary tupaia hepatocytes, Hepatology, 38, 1410-1418, https://doi.org/10.1016/j.hep.2003.09.009.
- . Sanada, T., Tsukiyama-Kohara, K., Yamamoto, N., Ezzikouri, S., Benjelloun, S., Murakami, S., Tanaka, Y., Tateno, C., and Kohara, M. (2016) Property of hepatitis B virus replication in Tupaia belangeri hepatocytes, Biochem. Biophys. Res. Commun., 469, 229-235, https://doi.org/10.1016/j.bbrc.2015.11.121.
- . Glebe, D., Urban, S., Knoop, E. V., Çaǧ, N., Krass, P., Grün, S., Bulavaite, A., Sasnauskas, K., and Gerlich, W. H. (2005) Mapping of the hepatitis B virus attachment site by use of infection-inhibiting preS1 lipopeptides and tupaia hepatocytes, Gastroenterology, 129, 234-245, https://doi.org/10.1053/j.gastro.2005.03.090.
- . Sun, D., and Nassal, M. (2006) Stable HepG2- and Huh7-based human hepatoma cell lines for efficient regulated expression of infectious hepatitis B virus, J. Hepatol., 45, 636-645, https://doi.org/10.1016/j.jhep.2006.05.019.
- . Dandri, M., Burda, M. R., Zuckerman, D. M., Wursthorn, K., Matschl, U., Pollok, J. M., Rogiers, X., Gocht, A., Köck, J., Blum, H. E., Weizsäcker, F. V., and Petersen, J. (2005) Chronic infection with hepatitis B viruses and antiviral drug evaluation in uPA mice after liver repopulation with tupaia hepatocytes, J. Hepatol., 42, 54-60, https://doi.org/10.1016/j.jhep.2004.09.021.
- . Petersen, J., Dandri, M., Mier, W., Lütgehetmann, M., Volz, T., Von Weizsäcker, F., Haberkorn, U., Fischer, L., Pollok, J.-M., Erbes, B., Seitz, S., and Urban, S. (2008) Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein, Nat. Biotechnol., 26, 335-341, https://doi.org/10.1038/nbt1389.
- . Lutgehetmann, M., Volz, T., Köpke, A., Broja, T., Tigges, E., Lohse, A. W., Fuchs, E., Murray, J. M., Petersen, J., and Dandri, M. (2010) In vivo proliferation of hepadnavirus-infected hepatocytes induces loss of covalently closed circular DNA in mice, Hepatology, 52, 16-24, https://doi.org/10.1002/hep.23611.
- . Chin, R., Earnest-Silveira, L., Koeberlein, B., Franz, S., Zentgraf, H., Dong, X., Gowans, E., Bock, C.-T., and Torresi, J. (2007) Modulation of MAPK pathways and cell cycle by replicating hepatitis B virus: factors contributing to hepatocarcinogenesis, J. Hepatol., 47, 325-337, https://doi.org/10.1016/j.jhep.2007.03.025.
- . Liu, Y., Cafiero, T. R., Park, D., Biswas, A., Winer, B. Y., Cho, C. H., Bram, Y., Chandar, V., Connell, A. K. O., Gertje, H. P., Crossland, N., Schwartz, R. E., and Ploss, A. (2023) Targeted viral adaptation generates a simian-tropic hepatitis B virus that infects marmoset cells, Nat. Commun., 14, 3582, https://doi.org/10.1038/s41467-023-39148-3.
- . Aldrich, C. E., Coates, L., Wu, T.-T., Newbold, J., Tennant, B. C., Summers, J., Seeger, C., and Mason, W. S. (1989) In vitro infection of woodchuck hepatocytes with woodchuck hepatitis virus and ground squirrel hepatitis virus, Virology, 172, 247-252, https://doi.org/10.1016/0042-6822(89)90126-8.
- . Moraleda, G., Saputelli, J., Aldrich, C. E., Averett, D., Condreay, L., and Mason, W. S. (1997) Lack of effect of antiviral therapy in nondividing hepatocyte cultures on the closed circular DNA of woodchuck hepatitis virus, J. Virol., 71, 9392-9399, https://doi.org/10.1128/jvi.71.12.9392-9399.1997.
- . Tuttleman, J. S., Pugh, J. C., and Summers, J. W. (1986) In vitro experimental infection of primary duck hepatocyte cultures with duck hepatitis B virus, J. Virol., 58, 17-25, https://doi.org/10.1128/jvi.58.1.17-25.1986.
- . Tavis, J. E., and Ganem, D. (1996) Evidence for activation of the hepatitis B virus polymerase by binding of its RNA template, J. Virol., 70, 5741-5750, https://doi.org/10.1128/jvi.70.9.5741-5750.1996.
- . Tuttleman, J. S., Pourcel, C., and Summers, J. (1986) Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells, Cell, 47, 451-460, https://doi.org/10.1016/0092-8674(86)90602-1.
- . Junker-Niepmann, M., Bartenschlager, R., and Schaller, H. (1990) A short cis-acting sequence is required for hepatitis B virus pregenome encapsidation and sufficient for packaging of foreign RNA, EMBO J., 9, 3389-3396, https://doi.org/10.1002/j.1460-2075.1990.tb07540.x.
Arquivos suplementares

